

H2020 - INDUSTRIAL LEADERSHIP - Information and Communication Technologies (ICT)

ICT-14-2016-2017: Big Data PPP: cross-sectorial and cross-lingual data integration and experimentation

ICARUS:

“Aviation-driven Data Value Chain for Diversified Global and Local Operations”

D3.1 – ICARUS Architecture, APIs Specifications and Technical and User
Requirements

Disclaimer:

The ICARUS project is co-funded by the Horizon 2020 Programme of the European Union. The information and views set out in this publication are

those of the author(s) and do not necessarily reflect the official opinion of the European Communities. Neither the European Union institutions and

bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein.

© Copyright in this document remains vested with the ICARUS Partners.

Workpackage: WP3 – ICARUS Platform Design

Authors: UBITECH, SUITE5, SILO, UCY, ENG, PACE, AIA, CELLOCK, ISI

Status: Final Classification: Public

Date: 31/03/2019 Version: 1.0

Ref. Ares(2019)2288438 - 31/03/2019

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

2 / 113

ICARUS Project Profile

Partners

 UBITECH (UBITECH) Greece

 ENGINEERING - INGEGNERIA INFORMATICA SPA (ENG) Italy

PACE Aerospace Engineering and Information Technology

GmbH (PACE)
Germany

 SUITE5 DATA INTELLIGENCE SOLUTIONS LIMITED (SUITE5) Cyprus

 UNIVERSITY OF CYPRUS (UCY) Cyprus

 CINECA CONSORZIO INTERUNIVERSITARIO (CINECA) Italy

 OAG aviation Worldwide LTD (OAG)
United

Kingdom

 SingularLOGIC S.A. (SILO) Greece

 ISTITUTO PER L'INTERSCAMBIO SCIENTIFICO (ISI) Italy

 CELLOCK LTD (CELLOCK) Cyprus

 ATHENS INTERNATIONAL AIRPORT S.A (AIA). Greece

Grant Agreement No.: 780792

Acronym: ICARUS

Title: Aviation-driven Data Value Chain for Diversified Global and Local

Operations

URL: http://www.icarus-h2020.eu

Start Date: 01/01/2018

Duration: 36 months

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

3 / 113

Document History

Version Date Author (Partner) Remarks

0.10 21/09/2018 Dimitrios Miltiadou (UBITECH)
Initial draft of the Table of Contents

(ToC)

0.20 10/10/2018
Dimitrios Miltiadou, Konstantinos Perakis

(UBITECH)
Initial outline of Sections 2-6

0.25 17/10/2018

Ralph Schultz, Henry Puls (PACE),

Dimitrios Miltiadou, Konstantinos Perakis

(UBITECH)

Initial contribution to section 2

0.30 25/10/2018

Ralph Schultz, Henry Puls (PACE),

Dimitrios Miltiadou, Konstantinos Perakis

(UBITECH)

Updated contribution to section 2

0.35 07/11/2018

Ralph Schultz, Henry Puls (PACE),

Dimitrios Miltiadou, Konstantinos Perakis

(UBITECH), Fenareti Lampathaki, Evmorfia

Biliri(Suite5)

Updated contribution to section 2,

Initial contribution to section 3

0.40 16/11/2018

Ralph Schultz, Henry Puls (PACE), Corrado

Gioannini, Luca Rossi (ISI), Haris

Zacharatos, Neofytos Vlotomas

(CELLOCK), Nikolaos Papagiannopoulos

(AIA), Dimitrios Miltiadou, Konstantinos

Perakis (UBITECH), Fenareti Lampathaki,

Evmorfia Biliri (Suite5)

Updated contribution to section 3

0.45 26/11/2018

Ralph Schultz, Henry Puls (PACE),

Dimitrios Miltiadou, Konstantinos Perakis

(UBITECH), Fenareti Lampathaki, Evmorfia

Biliri (Suite5)

Updated contribution to section 3

0.50 03/12/2018

Dimitrios Miltiadou, Konstantinos Perakis

(UBITECH), Fenareti Lampathaki, Evmorfia

Biliri (Suite5)

Initial contribution to section 4

0.55 14/12/2018

Dimitrios Miltiadou, Konstantinos Perakis

(UBITECH), Fenareti Lampathaki, Evmorfia

Biliri (Suite5)

Updated contribution to section 4

0.60 21/12/2018

Dimitrios Miltiadou, Konstantinos Perakis

(UBITECH), Fenareti Lampathaki, Evmorfia

Biliri (Suite5)

Updated contribution to section 4,

Initial contribution to section 5

0.65 14/01/2019

Dimitrios Miltiadou, Konstantinos Perakis

(UBITECH), Fenareti Lampathaki, Evmorfia

Biliri (Suite5), Susanna Bonura, Domenico

Messina (ENG), Dimosthenis Stefanidis,

George Pallis (UCY), Marios Zacharias,

Tasos Violetis, Apostolos Tsatsoulas,

Samuel Marntirosian (SILO)

Updated contributions to sections:

5.3.1, 5.3.8, 5.3.11 by SILO,

5.3.2, 5.3.5, 5.3.6, 5.3.7, 5.3.10,

5.3.12, 5.3.13, 5.3.18 by UBITECH,

5.3.3, 5.3.4, 5.3.9, 5.3.14 by Suite5,

5.3.16, 5.3.17, 5.3.19 by ENG,

5.3.15, 5.3.20, 5.3.21 by UCY

0.70 30/01/2019

Dimitrios Miltiadou, Konstantinos Perakis

(UBITECH), Fenareti Lampathaki, Evmorfia

Biliri (Suite5), Susanna Bonura, Domenico

Messina (ENG), Dimosthenis Stefanidis,

George Pallis (UCY), Marios Zacharias,

Tasos Violetis, Apostolos Tsatsoulas,

Samuel Marntirosian (SILO)

Updated contributions to sections:

5.3.1, 5.3.8, 5.3.11 by SILO,

5.3.2, 5.3.5, 5.3.6, 5.3.7, 5.3.10,

5.3.12, 5.3.13, 5.3.18 by UBITECH,

5.3.3, 5.3.4, 5.3.9, 5.3.14 by Suite5,

5.3.16, 5.3.17, 5.3.19 by ENG,

5.3.15, 5.3.20, 5.3.21 by UCY

0.75 13/02/2019
Dimitrios Miltiadou, Konstantinos Perakis

(UBITECH), Fenareti Lampathaki, Evmorfia

Updated contributions to sections:

5.3.1, 5.3.8, 5.3.11 by SILO,

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

4 / 113

Version Date Author (Partner) Remarks

Biliri (Suite5), Susanna Bonura, Domenico

Messina (ENG), Dimosthenis Stefanidis,

George Pallis (UCY), Marios Zacharias,

Tasos Violetis, Apostolos Tsatsoulas,

Samuel Marntirosian (SILO)

5.3.2, 5.3.5, 5.3.6, 5.3.7, 5.3.10,

5.3.12, 5.3.13, 5.3.18 by UBITECH,

5.3.3, 5.3.4, 5.3.9, 5.3.14 by Suite5,

5.3.16, 5.3.17, 5.3.19 by ENG,

5.3.15, 5.3.20, 5.3.21 by UCY

0.80 28/02/2019

Dimitrios Miltiadou, Konstantinos Perakis

(UBITECH), Fenareti Lampathaki, Evmorfia

Biliri (Suite5), Susanna Bonura, Domenico

Messina (ENG), Dimosthenis Stefanidis,

George Pallis (UCY), Marios Zacharias,

Tasos Violetis, Apostolos Tsatsoulas,

Samuel Marntirosian (SILO)

Updated contributions to sections:

5.3.1, 5.3.8, 5.3.11 by SILO,

5.3.2, 5.3.5, 5.3.6, 5.3.7, 5.3.10,

5.3.12, 5.3.13, 5.3.18 by UBITECH,

5.3.3, 5.3.4, 5.3.9, 5.3.14 by Suite5,

5.3.16, 5.3.17, 5.3.19 by ENG,

5.3.15, 5.3.20, 5.3.21 by UCY

0.85 14/03/2019

Dimitrios Miltiadou, Konstantinos Perakis

(UBITECH), Fenareti Lampathaki, Evmorfia

Biliri (Suite5), Susanna Bonura, Domenico

Messina (ENG), Dimosthenis Stefanidis,

George Pallis (UCY), Marios Zacharias,

Tasos Violetis, Apostolos Tsatsoulas,

Samuel Marntirosian (SILO)

Updated contributions to sections:

5.3.1, 5.3.8, 5.3.11 by SILO,

5.3.2, 5.3.5, 5.3.6, 5.3.7, 5.3.10,

5.3.12, 5.3.13, 5.3.18 by UBITECH,

5.3.3, 5.3.4, 5.3.9, 5.3.14 by Suite5,

5.3.16, 5.3.17, 5.3.19 by ENG,

5.3.15, 5.3.20, 5.3.21 by UCY

0.90 23/03/2019
Dimitrios Miltiadou, Konstantinos Perakis

(UBITECH)

Updated full draft circulated for

internal review

0.90_PACE 26/03/2019 Ralph Schultz (PACE) Internal review

0.90_ISI 26/03/2019 Corrado Gioannini (ISI) Internal review

0.90_S5 26/03/2019 Fenareti Lampathaki (Suite5) Internal review

0.95 29/03/2019
Dimitrios Miltiadou, Konstantinos Perakis

(UBITECH)

Updated version addressing

comments received during the

internal review process

0.99 31/03/2019
Dimitrios Miltiadou, Konstantinos Perakis

(UBITECH)

Final version for submission to the

EC

1.0 31/03/2019 Dimitrios Alexandrou (UBITECH) Submission to the EC

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

5 / 113

Executive Summary

The document at hand, entitled “ICARUS Architecture, APIs Specifications and Technical and User

Requirements” constitutes a report of the preliminary efforts and the produced results of Tasks T3.1

“Technology Requirements”, T3.2 “Demonstrator User Requirements ”and T3.3 “Platform

Architecture Design and APIs Specifications”. The purpose of this deliverable is to deliver the user

requirements and the technical requirements of the ICARUS platform, as well as to deliver the first

version of the conceptual architecture of the ICARUS platform. Hence, the scope of the current report

can be described in the following axes:

• To define the ICARUS agile development methodology, that is adopted in order to facilitate

the execution of all the project’s development activities in a solid and organised manner. This

methodology is a tailored to the needs of the ICARUS project agile development methodology.

Within this methodology, the agile processes, instruments, roles and methods that are

adopted in all the phases of the development of the ICARUS platform are defined. As part of

this methodology, the methods for defining and collecting the User Stories in a structured way

are documented. Furthermore, the requirements engineering process that is used in the

requirements elicitation is documented, the requirements’ key characteristics and

classification is presented, and the ICARUS stakeholders and their interactions with the

ICARUS platform is clearly defined.

• To present the collected User Stories that are stemming directly from the demonstrator

partners of the ICARUS project. The User Stories contain a high-level description of the

excepted behaviour of all sub-systems of the platform from the end-user perspective. They

have been prepared following the predefined structure “As a <user-type (stakeholder)>, I want

to <user-requirement> so that <reason>”. Furthermore, for each User Story a set of additional

management information, such as a unique identity, their category, their priority and their

acceptance criteria, is collected to facilitate their analysis in the next phases of the

methodology. The User Stories were collected through internal focus groups in the

demonstrators and after iterations between the demonstrators and the technical partners 57

User Stories were collected.

• To document the user requirements of the ICARUS platform that are the results of the analysis

of the collected User Stories. A comprehensive set of user requirements were extracted

following the requirements extraction techniques of the agile software development. These

elicited user requirements were further processed in order to adhere the key characteristics,

as defined in the methodology, and to ensure their usefulness in the design of the ICARUS

platform. Moreover, each user requirement has been assigned to a relevant feature category

and were classified into the functional and the non-functional requirements of the ICARUS

platform. From the analysis of the User Stories, 85 functional requirements were consolidated

in ICARUS.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

6 / 113

• To document the technical requirements of the ICARUS platform that derived from the

comprehensive analysis of the extracted user requirements. As with the user requirements,

the technical requirements also comply with the key characteristics defined in the

methodology in order to be leveraged in the design and the specification definition of the

components that will be integrated in the ICARUS platform. Hence, the user requirements

were further elaborated in 72 technical requirements, that span the different methodology

phases defined in D1.2, are based on the MVP features and take into consideration the

additional requirements that were extracted from the theoretical approaches of WP2 and

from the feedback received during the external validation of the ICARUS MVP. The list of

concrete and solid technical requirements constitutes the complete requirements backlog of

the ICARUS platform that will be maintained during the project implementation in order to

guide all development tasks.

• To deliver the first version of the conceptual architecture of the integrated ICARUS platform

that will drive the implementation activities of the ICARUS platform. The ICARUS architecture

is designed in a modular manner and is composed by a set of 21 key components with distinct

roles and scope towards the aim of providing the envisioned platform features. The technical

requirements were thoroughly analysed and the results were utilised in the design of the

necessary components which will address the ICARUS stakeholders’ needs as expressed into

these requirements. For each component, a comprehensive description of the design and

functionalities is documented ensuring that it addresses a specific set of technical

requirements from the list of the ICARUS technical requirements.

The current deliverable presents the first version of the ICARUS conceptual architecture, as well as the

user and technical requirements. However, the design of the architecture is a living process that will

last until M32 as per the ICARUS Description of Action. Thus, D3.1 constitutes a living document that

will include the updates that will be based on further identified functional requirements translated

into technical requirements, originating mainly from the evaluation and feedback received from the

demonstrator partners, and that will introduce updates and refinements in the ICARUS architecture

and will be presented in the upcoming versions of this deliverable.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

7 / 113

Table of Contents

1 Introduction ... 12

1.1 Purpose ... 12

1.2 Document Approach ... 13

1.3 Relationship with other ICARUS Results .. 14

1.4 Structure ... 15

2 Requirements Identification and Elicitation Methodology 16

2.1 ICARUS Agile development methodology ... 16

2.2 User Stories definition .. 21

2.3 Requirements Definition ... 23

2.3.1 Requirements Characteristics ... 23

2.3.2 Requirements Classification ... 24

2.4 ICARUS Stakeholders and Interactions .. 25

3 ICARUS User Requirements ... 26

3.1 Functional Requirements .. 26

3.1.1 Platform Functional Requirements .. 26

3.1.2 Demonstrator Functional Requirements ... 31

3.2 Non-functional Requirements .. 33

4 ICARUS Technical Requirements ... 35

4.1 List of technical requirements .. 35

4.2 Mapping of technical requirements and ICARUS stakeholders 40

5 ICARUS Platform Architecture ... 42

5.1 Conceptual architecture ... 42

5.2 Mapping Technical Requirements to Components 47

5.3 ICARUS Components .. 52

5.3.1 Anonymiser .. 52

5.3.1.1 Design and Functionalities overview .. 52

5.3.1.2 Addressed requirements .. 53

5.3.2 Cleanser ... 54

5.3.2.1 Design and Functionalities overview .. 54

5.3.2.2 Addressed requirements .. 55

5.3.3 Mapper ... 55

5.3.3.1 Design and Functionalities overview .. 55

5.3.3.2 Addressed requirements .. 57

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

8 / 113

5.3.4 Wallet Manager ... 58

5.3.4.1 Design and Functionalities overview .. 58

5.3.4.2 Addressed requirements .. 58

5.3.5 Encryption Manager ... 59

5.3.5.1 Design and Functionalities overview .. 59

5.3.5.2 Addressed requirements .. 60

5.3.6 Decryption Manager ... 61

5.3.6.1 Design and Functionalities overview .. 61

5.3.6.2 Addressed requirements .. 62

5.3.7 Key-Pair administrator .. 62

5.3.7.1 Design and Functionalities overview .. 62

5.3.7.2 Addressed requirements .. 63

5.3.8 Data Handler .. 63

5.3.8.1 Design and Functionalities overview .. 63

5.3.8.2 Addressed requirements .. 64

5.3.9 Data License and Agreement Manager ... 65

5.3.9.1 Design and Functionalities overview .. 65

5.3.9.2 Addressed requirements .. 66

5.3.10 Policy Manager .. 66

5.3.10.1 Design and Functionalities overview .. 66

5.3.10.2 Addressed requirements .. 67

5.3.11 ICARUS Storage and Indexing .. 67

5.3.11.1 Design and Functionalities overview .. 67

5.3.11.2 Addressed requirements .. 69

5.3.12 Master Controller .. 69

5.3.12.1 Design and Functionalities overview .. 69

5.3.12.2 Addressed requirements .. 70

5.3.13 OnPremise Worker and SecureSpace Worker ... 70

5.3.13.1 Design and Functionalities overview .. 70

5.3.13.2 Addressed requirements .. 71

5.3.14 Query Explorer .. 71

5.3.14.1 Design and Functionalities overview .. 71

5.3.14.2 Addressed requirements .. 72

5.3.15 Recommender .. 73

5.3.15.1 Design and Functionalities overview .. 73

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

9 / 113

5.3.15.2 Addressed requirements .. 74

5.3.16 Analytics and Visualisation Workbench ... 75

5.3.16.1 Design and Functionalities overview .. 75

5.3.16.2 Addressed requirements .. 76

5.3.17 BDA Application Catalogue ... 77

5.3.17.1 Design and Functionalities overview .. 77

5.3.17.2 Addressed requirements .. 78

5.3.18 Resource Orchestrator .. 78

5.3.18.1 Design and Functionalities overview .. 78

5.3.18.2 Addressed requirements .. 81

5.3.19 Jobs Scheduler and Execution Engine ... 81

5.3.19.1 Design and Functionalities overview .. 81

5.3.19.2 Addressed requirements .. 82

5.3.20 Notification Manager .. 83

5.3.20.1 Design and Functionalities overview .. 83

5.3.20.2 Addressed requirements .. 84

5.3.21 Usage Analytics ... 85

5.3.21.1 Design and Functionalities overview .. 85

5.3.21.2 Addressed requirements .. 86

6 Conclusions & Next Steps .. 87

Annex I: References ... 89

Annex II: ICARUS User Stories .. 90

Annex III: ICARUS User Requirements .. 98

Annex IV: ICARUS Technical Requirements Backlog 109

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

10 / 113

List of Figures

Figure 1-1: Requirements Identification and Elicitation Methodology 13

Figure 1-2: Relation to other ICARUS Work Packages ... 14

Figure 2-1: Sprint Based Agile Methodology (Source:
http://www.illuminationworksllc.com/agile-enablement/) ... 18

Figure 2-2: General Agile Development Process (Source: http://empireone.com.au/agile-
iterative-lean-development-what-does-it-all-mean) ... 18

Figure 2-3 Requirements Engineering in ICARUS .. 19

Figure 5-1: ICARUS conceptual architecture .. 43

Figure 5-2: Anonymiser overview .. 53

Figure 5-3: Cleanser overview ... 55

Figure 5-4: Mapper basic workflow (as perceived by the user) ... 56

Figure 5-5: Encryption Manager - encryption process ... 60

Figure 5-6: Decryption Manager – decryption process .. 61

Figure 5-7: Key Pair Administrator overview .. 63

Figure 5-8: Master Controller basic workflow .. 70

Figure 5-9: Query Explorer basic workflow (user's perspective) .. 72

Figure 5-10: Recommender overview ... 74

Figure 5-11: Analytics and Visualisation Workbench basic workflow 76

Figure 5-12: Container virtualisation .. 79

Figure 5-13: Resource Orchestrator overview .. 80

Figure 5-14: Notification Manager overview .. 84

Figure 5-15: Usage Analytics overview ... 85

List of Tables

Table 2-1: Phases, Roles and Activities in an Agile Software Development Process 17

Table 2-2: ICARUS agile process responsibilities .. 20

Table 2-3: Example for User Story Definition and Addition of Management Information 22

Table 2-4: Requirements characteristics ... 23

Table 2-5: Requirements Definition ... 24

Table 2-6: ICARUS Stakeholders .. 25

Table 3-1: Functional Requirements .. 27

Table 3-2: Demonstrator Functional Requirements .. 31

Table 3-3: Non-functional Requirements .. 33

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

11 / 113

Table 4-1: Technical requirements .. 36

Table 4-2: Mapping of MVP features to Technical Requirements .. 40

Table 5-1: Mapping of technical requirements to components ... 47

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

12 / 113

1 Introduction

1.1 Purpose

The scope of D3.1 is to document the preliminary efforts undertaken within the context of Tasks T3.1

“Technology Requirements”, T3.2 “Demonstrator User Requirements” and T3.3 “Platform

Architecture Design and APIs Specifications”. The deliverable D3.1 is prepared in accordance with the

ICARUS Description of Action and constitutes the first iteration of the work performed under these

tasks and will be provide the first version of the conceptual architecture of the integrated ICARUS

platform based on the extracted user requirements and identified technical requirements.

Towards this end, the scope of the current deliverable is:

• To present the ICARUS agile development methodology that is adopted in order to facilitate

the successful execution of each phase and activity of the project. This methodology is based

in the standard agile methodology with several adaptions to the needs of the ICARUS project.

• To collect the User Stories that are coming directly from the demonstrator partners of the

ICARUS project. The User Stories are defined following the template specified in the

methodology that ensures that the end-user's perspective for the platform’s expected

behaviour is captured.

• To extract and document the user requirements from the collected User Stories taking into

account the MVP features (defined in D1.2). The elicited user requirements are classified into

the functional and the non-functional requirements of the ICARUS platform.

• To document the technical requirements of the ICARUS platform as the outcome of the in-

depth analysis of the functional and non-functional user requirements. The list of technical

requirements will be maintained during the platform implementation as a requirements

backlog. In addition to the technical requirements from the collected User Stories, a set of

additional technical requirements, as result of the feedback received from the external

ICARUS MVP validation, are documented.

• To design and document the first version of the conceptual architecture of the integrated

ICARUS platform. The architecture will be composed by a set of modular components that will

address all the needs of all the different stakeholders of the platform. To ensure this, the

technical requirements are translated into specific platform features that that are grouped

under the modular components of the platform. Especially, for the case of technical

requirements originating from the external ICARUS MVP validation (e.g. end-to-end

encryption) a series of changes in the initial design were introduced in order to ensure that it

brings added value to the aviation data value chain stakeholders. Such changes required

internal discussions and brainstorming how they could be effectively addressed in the

architecture. Even if they imposed significant deviations from the initial design, the ICARUS

consortium decided to properly address them to assuage the security-related concerns of the

external aviation stakeholders with whom the consortium interacted. The architecture is

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

13 / 113

designed in a modular manner that will enable the desired scalability, interoperability and

extensibility.

It should be noted that the identification and analysis of the functional and non-functional

requirements, as well as their translation into technical requirements is a living process that will last

until M32 according to the ICARUS Description of Action and as the project evolves it will be constantly

updated and documented in the upcoming versions of this deliverable.

1.2 Document Approach

In the current deliverable a systematic and comprehensive approach is followed in order to deliver

the outcomes of T3.1, T3.2 and T3.3 as depicted in the Figure 1-1.

Figure 1-1: Requirements Identification and Elicitation Methodology

At first, the requirements identification and elicitation methodology is defined. In the ICARUS project

the agile development processes, instruments, roles and methods are adopted in order to support in

a clear manner each phase and activity of the project. In the methodology definition the outcomes of

the ICARUS Methodology, which includes various phases, with each phase having its own specific

steps, and the ICARUS MVP as derived from D1.2 are taken as input. The methodology provides the

guidance for the user story collection, as well as the requirement definition in terms of key

characteristics and requirements classification. Moreover, the ICARUS stakeholders and their

interactions with the ICARUS platform are identified.

Following the methodology definition, the user stories that are stemming directly from the

demonstrator partners of the ICARUS project are collected. These User Stories are analysed towards

the aim of extracting the user requirements that fully comply with the requirements characteristics

defined in the methodology. From the comprehensive set of user requirements that is derived from

the User Stories analysis, the requirements are further classified into functional, platform and

demonstrator, and non-functional requirements. Furthermore, the user requirements of each type

are also categorised based on the ICARUS methodology phases and the mapping between the User

Stories and the derived MVP features from D1.2 is documented.

From the elicited user requirements, the technical requirements are extracted. For each technical

requirement, a high-level categorisation based on the phases of the ICARUS methodology is provided,

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

14 / 113

as well as the mapping between this technical requirement and the relevant user requirements.

Moreover, in this step the mapping between the extracted technical requirements and the MVP

features from D1.2 is provided as one more assurance of the requirements’ validity.

Following the technical requirements elicitation, the design of the conceptual architecture of the

integrated ICARUS platform is documented. In this step, the extensive analysis of the technical

requirements provides the design and definition of the components of the architecture that will be

integrated in order to provide the envisioned platform features that will address the stakeholders’

needs based on the input provided from all previous steps. The ICARUS architecture is modular and

for each component of the architecture the design and specifications are provided, along with the list

of addressed requirements.

1.3 Relationship with other ICARUS Results

Deliverable D3.1 is released in the scope of WP3 “ICARUS Platform Design” activities and reports the

preliminary efforts undertaken within the context of Tasks T3.1 “Technology Requirements”, T3.2

“Demonstrator User Requirements ” and T3.3 “Platform Architecture Design and APIs Specifications”.

Moreover, as depicted in Figure 1-2 , the outcomes of T3.1 and T3.2 are provided as input to T3.3 in

order to formulate the initial version of the integrated ICARUS platform. As the project evolves, the

updated outcomes of T3.1 and T3,2 will be also provided as input to T3.3, T3.4 an T3.5 in order to

formulate the designs of the Core Data Service Bundles and the Added Value Services that will drive

the upcoming versions of the integrated ICARUS platform.

Figure 1-2: Relation to other ICARUS Work Packages

D3.1 and WP3, are directly related to the outcomes of WP1 “ICARUS Data Value Chain Elaboration”

with regard to ICARUS methodology, the ICARUS Minimum Viable Product (MVP) and WP2 “ICARUS

Big Data Framework Consolidation” with regard to the Big Data Framework methods for data

collection, data provenance, data safeguarding, data curation, data linking, data analytics and data

sharing.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

15 / 113

The external ICARUS MVP validation activities that are performed within the context of WP1, that

resulted in new additional requirements, also affected the progress of the tasks of WP3. In order to

ensure proper alignment with such additional requirements across the ICARUS results, the

deliverables of WP2 and WP3 proceeded almost in parallel with D3.1.

D3.1 provides the necessary design and the specifications of the components, as well as the overall

platform design, to WP4 that will deliver the implementation of these components following the

approach formulated in the WP3 activities. Finally, the feedback that will be collected from the

continuous evaluation of the platform as a result of the WP5 activities will be fed in WP3 and will drive

the updates and adjustments in the design and specifications of the components of the platform, as

well as the overall integrated ICARUS platform.

1.4 Structure

The structure of the document is as follows:

• In Section 2, the requirements identification and elicitation methodology is defined. At first,

the ICARUS Agile development methodology is presented, providing an overview of the

adopted development processes, instruments, roles and methods. Moreover, in this section

the User Stories definition process is presented, as well as the requirements definition

process.

• In Section 3, the elicited user requirements are documented. The user requirements are

classified into platform and demonstrator functional requirements and non-functional

requirements. For each requirement, the relevant category based on the ICARUS

methodology is documented along with the related User Stories and MVP features.

• In Section 4, the extracted technical requirements are presented. The technical requirements

are grouped logically based on the platform features and for each requirement the relevant

phase of the ICARUS methodology and the relevant user requirements are documented.

Furthermore, the mapping between the technical requirements and the MVP features from

D1.2 is presented.

• In Section 5, the first version of the conceptual architecture of the integrated ICARUS platform

is presented. Additionally, the mapping between the technical requirements and the designed

components is presented. For each component of the architecture, the design and

functionalities overview are presented along with the list of addressed requirements.

• Section 6 concludes the deliverable. It outlines the main findings of the deliverable which will

guide the future research and technological efforts of the consortium.

• Annex I lists the references included in the present deliverable.

• Annex II documents the collected User Stories.

• Annex III presents the elicited user requirements.

• Annex IV documents the technical requirements backlog.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

16 / 113

2 Requirements Identification and Elicitation Methodology

A major benefit of research projects is the different expert skills brought by each partner into the

consortium. In order to ensure that the collaboration of all partners in ICARUS leads to excellent

results, development processes have been defined in a clear manner for each phase and activity of

the project.

The following paragraphs describe the adaption of the agile development processes, instruments,

roles and methods that will support the ICARUS project activities in the best way. The common

understanding of what has to be done and how it has to be done, enables all members of the project

to fulfil their assignments and to develop their parts being ensured, that there will be a harmonised

and controlled interaction with the other project partners.

An important step in the agile development is the definition of the requirements elicitation process,

which is done in the second part of this chapter. The ICARUS requirements elicitation process starts

with the collection of user requirements for the defined user stories, brought by partners who are

implementing a demonstrator in the project and ends with the derivation of technical requirements

out of these user requirements, by technical partners who will perform the platform implementation.

As one decisive result of deliverable D1.2: The ICARUS Methodology and MVP, the breakdown of the

ICARUS methodology will be taken as input. Precisely, the ICARUS methodology is divided into:

- Phase I - Data Collection

- Phase II – Data Enrichment

- Phase III – Asset Storage

- Phase IV – Asset Exploration and Extraction

- Phase V – Data Analytics

- Phase VI – Added Value Services

- Phase VII – Service Collection.

Each phase consists of one or more step and illustrates how the different ICARUS stakeholders interact

with ICARUS. These phases or steps will be used to cluster the user requirements and the User Stories

to functional sets, which will be the input for the next step, the technical requirements definition.

Furthermore, User Stories are the instrument, which bridges the technical requirements and the agile

development process. Thus, this section describes, among others, how a set of one or more

requirements can be translated into a concrete software feature. Additionally, development related

information like priority and test case definition is completing a user story. Assigning a user story to a

coming release defines the envisaged functionality of a product increment.

2.1 ICARUS Agile development methodology

This paragraph describes the methods and instruments of the standard agile methodology and their

adaptions to the needs of the development of the ICARUS platform.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

17 / 113

One characteristic of the agile development is the assignment of activities to precise specified roles

(Cohn, 2010):

- Product Owner: The viewpoint of the product owner is the perspective of the customer. The

product owner translates the product related interest of the customer into a functional

description – so called User Stories - which will feed into the development process. By

assigning a priority to a functionality, the product owner determines the sequence of

functions development. Finally, the product owner checks during an acceptation if the

functional requirement has been implemented completely and correctly.

- System Architect: A System Architect is a developer which special skills. A system architect

designs the system architecture to ensure among other things reliability, availability and

maintainability of the product during the development process.

- Developer: A developer executes development task to realise the functional request defined

by the product owner.

- Quality Assurance: The Quality Assurance ensures during the development that newly

implemented functions are working as specified and that the rest of the product works still

faultless.

Figure 2-1 describes the core parts of all agile development processes in which the recurring execution

of a defined sequence of process phases is presented. The following table describes the typical

activities of each phase for the software development process.

Table 2-1: Phases, Roles and Activities in an Agile Software Development Process

Phases Participants Actions Taken

Plan

Product Owner

System Architect

Developer

Quality Assurance

Define and specify user features for the next product

increment. Features are described by User Stories. To

prepare the acceptance of a User Story by the Product

Owner, special test criteria have to be defined and

specified by the whole team. Only if all of these criteria are

fulfilled, the user story will be accepted by the Product

Owner.

Design
System Architect

Developer

As a preparation for the development, the system

architecture will be designed by the system architects and

developers.

Build Developer

Quality Assurance

The software will be developed by consideration of

predefined test criteria

Test Quality Assurance

The predefined test criteria will be translated into test

cases. The test cases will be applied to the product

increment.

Review

Customer

Product Owner

System Architect

 Developer

Quality Assurance

The development team presents the new features of the

product increment to the customer. The customer checks

if the requirements are fulfilled completely. In case of

required changes new User Stories will be defined

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

18 / 113

These phases can vary depending on certain requirements of the project. Nevertheless, each iteration

creates a product increment with available features defined in the planning, designed, built and

verified in the following phases. The product increment is the input for the next iteration.

Figure 2-1: Sprint Based Agile Methodology (Source: http://www.illuminationworksllc.com/agile-
enablement/)

The following picture shows the agile development process in a more general manner. User requests

for a new feature or the enhancement of an existing feature of the product are managed in a so called

backlog. For each iteration a set of these requests will be determined and brought into the

development. The resulting release will be delivered to the stakeholders of the project, who will

evaluate it and provide feedback. The ICARUS development process will embrace this process with the

necessary adjustments to fit the needs of the project.

Figure 2-2: General Agile Development Process (Source: http://empireone.com.au/agile-iterative-lean-

development-what-does-it-all-mean)

Backlog:

The backlog manages user requested product features. In ICARUS we will start with the collection of

product features and translate them into the so-called User Stories. Each User Story is constructed in

a predefined schema, which is explained in section 2.2. A User Story contains a clearly separated

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

19 / 113

product function that enables developers to give a rather good workload estimation. Finally, a priority

is assigned to the User Stories. It will be used in the selection of User Stories for the next iteration and

by the developer for the decision in which sequence the User Stories will be implemented.

Iteration:

The iteration is the software development process for a predefined set of backlog items. Due to the

earlier estimation and the knowledge about the capacity of the development team, a set of User

Stories will be selected which fits into an iteration.

Each User Story will run through the phases plan, design, build and test. Of particular importance

during the development is the collaboration of all stakeholders in the process. Frequent meetings

between the technical and demonstrator partners of ICARUS constitute the chosen methodology.

Deliverables

At the end of each iteration an increment of the product is available for verification and validation

conducted by the ICARUS demonstrators and external stakeholders in the aviation industry. This

process step will create a first assessment of available product features which allow the acceptation

or lead to a rejection or change request of the requirements as a first feedback to the development

team.

According to the implementation efforts some changes can be implemented immediately, and others

have to be translated to new User Stories and stored in the backlog again, waiting to be selected for

a certain iteration.

The ICARUS agile method and the usage of User Stories, Requirements and Backlog allows a

requirement engineering process as described in Figure 2-3.

Figure 2-3 Requirements Engineering in ICARUS

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

20 / 113

In the first step, the state of research of the project topic has been analysed and the first high-level

versions of the ICARUS demonstrators have been defined. Out of this knowledge a set of User Stories

were defined related to the platform itself or to a certain demonstrator.

Then, the requirements derived from the User Stories in a work package overlapping collaboration.

Furthermore, additional requirements are derived from the external ICARUS MVP validation. During

the analysis the requirements were checked in order to ensure that the requirements fulfil the

characteristics explained in section 2.3.1, e.g. redundancies and inconsistencies were eliminated, the

level of detail has been harmonised and so on. Finally, the requirements were validated and accepted

or rejected or adapted.

The following table assigns the agile instruments to the ICARUS adapted instruments, lists the

activities and the responsible work packages and partners.

Table 2-2: ICARUS agile process responsibilities

Agile Instrument Representation in ICARUS Represented in WP by:

Product Owner

Represented in ICARUS project by the partners who are

implementing demonstrators and using the platform

features.

Their input corresponds to the user requirements.

WP3, WP5:

AIA, CELLOCK, ISI, OAG and

PACE.

System Architect,
Developer

Represented in ICARUS by the partners who are

designing and implementing the ICARUS product.

Their activities are the derivation of technical

requirements out of user requirements, the definition

of User Stories and implementation of the product

increments alpha, beta, V1.0, V1.5 and V2.0.

WP2, WP3, WP4:

UBITECH, Suite5, ENG,

SILO, UCY

Quality Assurance

Represented in ICARUS by the partners who are

defining the validation and evaluation framework,

which ensures a comparable assessment of each

ICARUS product increment combined with the

application of the related demonstrator version.

WP5:

CINECA, SILO, AIA,

CELLOCK, ISI, OAG and

PACE.

Iterations

ICARUS product increments are planned for

- Beta version: M18

- Release 1.00: M24

- Release 1.50: M30

- Release 2.00: M36

After release, the demonstrators will be applied to

verify and validate the product increments by following

the steps defined in the framework.

Assigned User Stories will be checked, and new or

adapted requirements will be created and reported to

WP3 and WP5, to be considered for the next product

increment.

WP2, WP3, WP4:

UBITECH, Suite5, ENG,

SILO, UCY

User Stories

Defined by the partners the partners who are

implementing demonstrators and using the platform

features with the help of the partners who are

responsible for the implementation of all features and

layers of the ICARUS product.

WP3, WP4, WP5:

AIA, CELLOCK, ISI, OAG,

PACE (demonstrator

partners)

UBITECH, Suite5, ENG,

SILO, UCY (technical

partners)

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

21 / 113

2.2 User Stories definition

A User Story is an instrument used in Agile software development to capture a description of a

software feature from an end-user perspective. The User Story describes the type of user, what they

want and why. A User Story is very high level and helps to create a simplified description of a

requirement.

Usually a User Story provides in one sentence enough information related to the described product

feature, for which the development team can conduct a reasonable work load estimation.

Furthermore, the User Story is used in planning meetings to enable the development team to design

and implement the product features.

A User Story typically has a predefined structure:

- As a <user-type (stakeholder)>, I want to <user-requirement> so that <reason>

As mentioned earlier, the agile software development method allows the definition and adaption of

User Stories during the whole project life cycle and the selection of them for implementation in the

upcoming iteration.

Table 2-3 presents four examples of User Stories from the ICARUS demonstrators with the additional

management information:

- ID: a unique identifier of the User Story composed by the demonstrator partner name and a

number;

- Category: a generic term for grouping the required functionality. Categories have been

defined in D1.2: The ICARUS Methodology and MVP. Categories are linked either to a complete

phase of the ICARUS methodology or to a concrete step of a phase:

o Collection

o Curation

o Enrichment

o Linking

o Exploration

o Analytics

o Notification

o Recommendation

o Sharing

o Service Collection

The list of categories constitutes only an initial guideline. Demonstrators may define

additional categories if required.

- User Story:

o As a <user-type (stakeholder)>: This is the type of the stakeholder of the story writing

the user story; the roles are those defined in D1.2: The ICARUS Methodology and MVP

and described in Table 2-6.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

22 / 113

o I want to <user-requirement>: the requested feature or functionality that will be

included in the ICARUS platform.

o So that I can <reason>: a description of the benefit or the added value of the

requested feature or functionality.

- PRIORITY: The priority (high, medium or low) defines the importance of the user story and

usually how soon should this user story be included in the upcoming development iteration.

- VALUE: The value (high, medium or low) defines the level of benefit or added value of the

addition of the described feature or functionality to the ICARUS platform from the point of

view of the stakeholder.

- ACCEPTANCE: The acceptance defines the criteria for the successful implementation and the

successful evaluation of the implementation of the user story.

Table 2-3: Example for User Story Definition and Addition of Management Information

ID Category

User Story Priority Value Acceptance

As a

<user-

type>

I want to <user

requirement>

So that

<reason>

PACE_
001

Collection Data

consume

r

retrieve

periodically the

updates

automatically

from data

providers

it is

ensured

that data

are always

up-to-date

Medium Mediu

m

ICARUS

provides any

available

updates on a

dataset from

a data

provider

automatically

by

performing

periodic

checks

AIA_00
2

Analytics Data

consume

r

login to a secure

space

I can

analyse my

confidential

data

High High A user should

be able to

analyse its

confidential

data in secure

space

CEL_00
9

Analytics Data

Scientist

use a

Dashboard to

combine and

run multiple

reports

perform an

analysis of

the results

High High A user should

be able to use

visualisation

tools for

statistical

analysis

ISI_006 Notification

Data

consume

r

Be informed

about any

update or

modification of

the

license/terms of

usage of

datasets I am

I can take

immediate

action if

needed and

get new

relevant

data when

possible

Low
Mediu

m

The platform

notifies the

users about

any update

on data terms

of usage

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

23 / 113

using or

interested into

All partners in ICARUS and especially the ones that are implementing a demonstrator (AIA, CELLOCK,

ISI and PACE), have been involved in the definition of the MVP (Minimum Viable Product) in WP1 by

evaluating a set of potential platform features. Furthermore, all demonstrators’ execution scenarios

have been detailed more and more in the course of the project. The User Stories were collected

through workshops between the demonstrator partners and the technical partners of the project as

a continuation of the definition of the MVP. These User Stories were used in the elicitation of the

functional and non-functional user requirements that are documented in section 3. All the collected

User Stories are provided as an annex in Annex II.

2.3 Requirements Definition

In this section the requirements definition is elaborated, describing the definition of instruments to

be used in the requirements elicitation process. In particular, the characteristics of the requirements

are presented, followed by the classification of the elicited requirements into categories.

2.3.1 Requirements Characteristics

User Stories are a useful instrument to get well defined portions of system requirements in a language

that users without technical background are able to use. User Stories are the input for the next action,

where the technical partners are translating “user” requirements to more implementation-oriented

requirements, which can be interpreted by system architects or developers.

Requirements do not have such a strong definition schema like User Stories but need to own a set of

characteristics in order to be useful as an input for the design and development process (Ericson,

2015). These characteristics are listed in Table 2-4.

Table 2-4: Requirements characteristics

Characteristic Explanation

Unitary
(Cohesive) The requirement addresses one and only one thing.

Complete The requirement is fully stated in one place with no missing information.

Consistent The requirement does not contradict any other requirement and is fully consistent with all

authoritative external documentation.

Non-
Conjugated

(Atomic)

The requirement is atomic, i.e., it does not contain conjunctions. E.g., "The postal code field

must validate American and Canadian postal codes" should be written as two separate

requirements: (1) "The postal code field must validate American postal codes" and (2) "The

postal code field must validate Canadian postal codes".

Traceable

The requirement meets all or part of a business need as stated by stakeholders and

authoritatively documented.

Current The requirement has not been made obsolete by the passage of time.

Unambiguous

The requirement is concisely stated without recourse to technical jargon, acronyms (unless

defined elsewhere in the Requirements document), or other esoteric verbiage. It expresses

objective facts, not subjective opinions. It is subject to one and only one interpretation.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

24 / 113

Vague subjects, adjectives, prepositions, verbs and subjective phrases are avoided.

Negative statements and compound statements are avoided.

Specify
Importance

Many requirements represent a stakeholder-defined characteristic the absence of which

will result in a major or even fatal deficiency. Others represent features that may be

implemented if time and budget permits. The requirement must specify a level of

importance.

Verifiable

The implementation of the requirement can be determined through basic possible

methods: inspection, demonstration, test (instrumented) or analysis (to include validated

modelling & simulation).

2.3.2 Requirements Classification

The requirements can be classified in the two following main categories:

Functional:

Functional requirement is the declaration of the intended functionality of a system and its

components as reported by a hypothetical non-technical observer. The functional requirement is

facilitating the development team to determine the expected behaviour or output of the system in

the case of a certain input and in which a technical problem is addressed. Additionally, within the

functional requirements the outputs of the envisioned product increment when receiving the

described input is described. Depending on the degree of efficiency they can be split into “platform”

and “demonstrator” oriented functional requirements.

Non-functional:

As per ISO/IEC 25010:2011, the Non-functional requirements define system attributes such as

security, reliability, performance, maintainability, scalability and usability. Also known as system

qualities, they are just as critical as functional requirement as they safeguard the usability and

effectiveness of the entire system. Failing to meet any of them can result in systems, that fail to satisfy

business or markets or user needs (ScaledAgileFramework, 2018).

In some cases, non-functional requirements cannot be resolved to one function or component or layer

in the architecture. And in other cases, they cannot be tested directly. Nevertheless, they have to be

kept in mind for choosing the right design and implementation of a system.

Table 2-5: Requirements Definition

Type Description

Functional

Platform
Specifies the intended functionalities of the ICARUS platform that will be

used from all users of the platform (stakeholders and demonstrators).

Demonstrator

Specifies the intended functionalities of the ICARUS platform that are

relevant to the specific demonstrators’ needs and that will support the

applications that will be developed by each demonstrator.

Non-functional Specify additional system properties like performance, quality, robustness

and many other more.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

25 / 113

2.4 ICARUS Stakeholders and Interactions

In the deliverable D1.2: The ICARUS Methodology and MVP a set of general workflow descriptions, in

another word scenarios, are documented. Each of these scenarios describes on a high level, by whom

and how the ICARUS platform is used. The identified stakeholders of these scenarios documented in

D1.2 are utilised in the definition of the User Stories in order to present their view point. Table 2-6

lists all identified stakeholders and describes their role using the ICARUS platform.

Table 2-6: ICARUS Stakeholders

Stakeholder Description

Data Provider

The user’s main objective is to share his/her data for processing or consuming in

ICARUS.

(Anyone that provides data to the platform can undertake the role of data provider,
such as data scientist, data analyst, researcher, non-expert user)

Data
Consumer

The user’s main objective is to consume and/or process data offered through

ICARUS.

(Anyone that consumes data from the platform can undertake the role of data
consumer, such as data scientist, data analyst, researcher, non-expert user)

Service asset
provider

The user’s main objective is to create a service (e.g. custom-made algorithm) on top

of ICARUS data value chain and make it available in ICARUS.

(Usually this role is undertaken by data scientists or data analysts and software
developers)

Service asset
consumer

The user’s main objective is to consume a service asset offered through ICARUS.

(Anyone that consumes the services of the platform can undertake the role of data
consumer, such as data scientist, data analyst, researcher, non-expert
user, software developer)

Administrator Installs, checks and maintains the system.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

26 / 113

3 ICARUS User Requirements

In section 2.1 the ICARUS agile development methodology was presented. Within this methodology,

all partners of the ICARUS project, who are implementing a demonstrator which uses the platform,

were involved in the User Stories definition following the instructions described in the previous

section. In the next crucial step of the methodology, a comprehensive set of user requirements has

been derived out of these User Stories.

Initially, the elicited user requirements were checked and analysed in order to assure that each

requirement fulfils the characteristics explained in 2.3.1. For a better handling during the platform

implementation, each requirement has been assigned to a category and a requirement type. The list

of categories derived from the phases or concrete step of a phase of the ICARUS methodology, in the

same manner as it was utilised in the User Stories definition. For the identification of the category of

each requirement, each phase of the ICARUS methodology has been checked for a functional mapping

with the requirement. For the identification of the requirement type, a mapping has been created

based on the requirements classification that was described in section 2.3.2.

Hence, the following subsections present the derived user requirements, in the form of tables,

classified into the following types:

• Platform functional requirements,

• Demonstrator functional requirements,

• Non-functional requirements.

Each table contains the following information for each of the identified user requirements:

- A unique identifier of the user requirement;

- A high-level description of the requirement;

- A high-level categorisation based on the phases of the ICARUS methodology presented in

D1.2, where applicable;

- The list of the related User Stories from which the requirement was elicited;

- The list of the related MVP features that were reported in D1.2;

The complete list of the ICARUS user requirements is provided also in Annex III.

3.1 Functional Requirements

3.1.1 Platform Functional Requirements

The following table presents the elicited platform functional requirements with the additional

management information:

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

27 / 113

Table 3-1: Functional Requirements

ID Description of the requirement Category Related
User Stories Feature ID

Req_001 ICARUS should inform users for updates on

datasets. Notification

PACE_001

AIA_007

CEL_003

CEL_010

ISI_004

PLATF_F_01

PLATF_F_02

PLATF_F_48

Req_002 ICARUS should support connections to various

APIs for data exchange (import/export)
Collection

PACE_001

PACE_014

CEL_008

CEL_002

PLATF_F_01

PLATF_F_02

Req_003
ICARUS should provide functions to create and

manage shortcuts and workflows related to the

user’s recent actions or workflows.

Analytics PACE_002

AIA_001

PLATF_F_30

PLATF_F_51

PLATF_F_52

PLATF_F_53

Req_004 ICARUS should offer a public and a proprietary

and confidential working space.
Analytics

PACE_023

AIA_002

PLATF_F_46

PLATF_F_47

Req_005 ICARUS should support tags for datasets in

addition to categories.

Enrichment

Linking

PACE_005

PACE_008

PACE_009

CEL_001

CEL_002

CEL_005

PLATF_F_16

PLATF_F_20

Req_006
ICARUS should support filters for tagged

datasets (i.e. real-time data, historical,

proprietary, public, demo/preview, etc).

Linking

PACE_005

PACE_008

PACE_009

CEL_001

CEL_002

CEL_005

PLATF_F_18

Req_007 ICARUS analytics should work with a mixture of

confidential and public data.

Collection,

Exploration

Analytics

PACE_003

AIA_003

AIA_004

AIA_005

AIA_012

PLATF_F_04

PLATF_F_11

PLATF_F_12

PLATF_F_13

PLATF_F_26

PLATF_F_29

PLATF_F_30

PLATF_F_32

PLATF_F_40

Req_009 ICARUS should support to search for datasets by

type
Exploration

PACE_005

PACE_008

PACE_009

PACE_010

CEL_001

CEL_002

CEL_003

CEL_004

CEL_005

PLATF_F_22

PLATF_F_23

Req_010 ICARUS should support to search for datasets by

keywords
Exploration PACE_005

PLATF_F_22

PLATF_F_23

Req_011 ICARUS should provide data sets which are

relevant to my search.

Linking,

Recommend

ation

PACE_005

PACE_015

PLATF_F_18

PLATF_F_51

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

28 / 113

Req_012 ICARUS should support to search for datasets by

date and time.
Exploration PACE_005

PLATF_F_22

PLATF_F_23

Req_016
ICARUS platform should ensure that the users

can query data that they are authorised to

access.

Exploration

Analytics

PACE_006

ISI_001

ISI_002

PLATF_F_26

Req_017 ICARUS platform should offer different level of

confidentiality for the datasets.

Collection,

Exploration

Analytics

PACE_003

PACE_021

AIA_002

PLATF_F_04

PLATF_F_26

Req_018 ICARUS platform should provide a set of

advanced analytics algorithms.
Analytics

PACE_007

AIA_003

AIA_004

AIA_005

CEL_009

ISI_005

PLATF_F_33

PLATF_F_34

Req_019

ICARUS platform should provide features to

either customise the defined analytics

algorithms or define custom analytics

algorithms.

Analytics

PACE_007

AIA_003

AIA_004

AIA_005

CEL_009

ISI_005

PLATF_F_29

Req_020
ICARUS platform should provide private space

where I can store the data obtained through a

query.

Analytics

PACE_023

AIA_002

AIA_003

PLATF_F_43

PLATF_F_46

PLATF_F_47

Req_022
ICARUS should support file upload and

download services for common text formats

such as ASCII, CSV, XML, YAML, JSON

Collection,

Exploration

PACE_011

PACE_014

CEL_008

PLATF_F_41

PLATF_F_42

PLATF_F_43

Req_023
ICARUS platform should allow the user to select

a file format for download if a conversion is

feasible.

Exploration
PACE_011

CEL_007
PLATF_F_27

Req_024 ICARUS platform should suggest available data

from other sources related to my queries.

Recommend

ation

PACE_012

AIA_008

ISI_004

PLAT_F_23

Req_027 ICARUS platform should be able to combine

data and provide the means to obtain them.

Collection,

Exploration

PACE_013

CEL_007

ISI_001

ISI_002

PLATF_F_42

Req_028 ICARUS should support the upload of external

data sets
Collection

PACE_014

PACE_021

CEL_008

PLATF_F_03

Req_029
ICARUS should provide data conversion for

uploaded file format into ICARUS platform

internal data format.

Curation
PACE_014

PACE_021

PLATF_F_11

PLATF_F_12

PLATF_F_13

PLATF_F_27

Req_030
ICARUS platform should provide features for

adding additional (semantic) information to

data assets

Linking PACE_015
PLATF_F_16

PLATF_F_17

Req_031
The user should be able to explore the ICARUS

data model and can provide suggestions to the

data administrator.

Curation

PACE_015

PACE_016

CEL_008

PLATF_F_11

PLATF_F_12

PLATF_F_13

Req_032 ICARUS platform should provide features for

updating my datasets
Curation PACE_016 PLATF_F_14

Req_033
ICARUS platform should inform a user if data,

for which the user owns a license to use, have

been updated or deleted.

Notification

AIA_007

CEL_11

ISI_004

PlATF_F_48

PlATF_F_49

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

29 / 113

Req_034
ICARUS platform should provide features for

defining and modifying the license model of my

data.

Sharing

PACE_017

AIA_009

AIA_010

AIA_011

ISI_002

ISI_006

ISI_007

PLATF_F_56

PLATF_F_57

PLATF_F_58

PLATF_F_59

Req_035
ICARUS should provide indicative usage

analytics on the datasets usage within the

platform

Analytics PACE_017 PLATF_F_45

Req_036

ICARUS platform should support the

negotiations between data provider and data

consumer until a data sharing agreement has

been signed.

Sharing

PACE_017

PACE_019

AIA_010

CEL_008

ISI_007

PLATF_F_60

PLATF_F_61

PLATF_F_62

Req_037 ICARUS platform should provide the means to

improve the quality level of the user’s data
Collection

PACE_018

ISI_003

PLATF_F_06
PLATF_F_07

Req_038

ICARUS platform should provide mechanisms to

define the licensing requirements and privacy

restrictions (DSGVO/GDPR compliance) for a

dataset

Collection
PACE_019

PACE_020

PLATF_F_08

PLATF_F_09

PLATF_F_10

Req_039 ICARUS platform should provide a tool for data

anonymisation.
Collection PACE_020 PLATF_F_08

Req_042
ICARUS should support a simplified data upload

process, if these data will be used only by

myself.

Collection

PACE_014

PACE_021

CEL_008

PLAT_F_05

Req_043 ICARUS should be able to link different datasets Curation

PACE_015

PACE_022

AIA_001

AIA_003

AIA_004

AIA_005

PLATF_F_16

Req_045
ICARUS platform should provide features for

transferring data from my confidential space to

the ICARUS platform

Collection,

Analytics
PACE_023

PLATF_F_43

PLATF_F_46

PLATF_F_47

Req_046
ICARUS platform should provide the

functionality to manage (semantic) links

between data assets.

Linking PACE_015 PLATF_F_16

Req_047
ICARUS platform should be able to suggest

integrated data sets in the context of queries

and data uploads.

Linking
PACE_012

AIA_008
PLATF_F_17

Req_049

ICARUS should provide business intelligence

tools that enable the automated generation of

event driven alerts and customised reports and

notify user about results.

Analytics,

Notification

AIA_002

AIA_006

PLATF_F_37

PLATF_F_38

PLATF_F_41

Req_050 ICARUS should be able to integrate structured

and unstructured data.
Collection AIA_002 PLATF_F_14

Req_051 ICARUS should be able to report and visualise

analysis results.
Analytics

AIA_004

AIA_012

AIA_015

PLATF_F_37

PLATF_F_38

Req_053
ICARUS should provide comprehensive means

to visualise and to compare results (graphical,

tabular, …)

Analytics

AIA_006

AIA_015

AIA_016

AIA_017

PLATF_F_37

PLATF_F_38

PLATF_F_39

PLATF_F_53

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

30 / 113

CEL_009

Req_054
ICARUS should be able to execute analytics and

workflows automatically (through pre-

scheduled jobs).

Analytics AIA_005

PLATF_F_29

PLATF_F_30

PLATF_F_40

Req_055
ICARUS should provide dashboards and help the

user compare the results with minimum

number of interactions.

Analytics

AIA_006

AIA_015

AIA_016

AIA_017

CEL_009

PLATF_F_39

Req_056

ICARUS platform should support connections to

web services and provide API for the upload and

download of data from/to other data sources

and sinks.

Collection AIA_007

PLATF_F_01

PLATF_F_02

PLATF_F_48

Req_057

ICARUS platform should provide a listing with all

the available data sources and related

information and among others the terms of use

for each one of them.

Collection

Recommend

ation

AIA_008
PLATF_F_03

PLATF_F_51

Req_058

ICARUS platform should provide the

monitoring, logging and auditing mechanisms in

order for the stakeholders to be able to audit

data usage and resolve any disputes

Sharing AIA_014 PLATF_F_45

Req_059
ICARUS should provide a guideline or a guidance

to create an appropriate license definition and

agreement.

Sharing

AIA_010

CEL_008

ISI_006

ISI_007

PLATF_F_55

PLATF_F_56

PLATF_F_57

Req_060 ICARUS should provide the features for the

management and update of data licenses.
Sharing

AIA_011

ISI_006

PLATF_F_58

PLATF_F_59

Req_061
ICARUS should support notifications regarding

the result of the execution of scheduled

analytics

Analytics

PACE_003

AIA_003

AIA_004

AIA_005

PLATF_F_50

Req_062
ICARUS should provide a GUI where the

progress of processes and workflows can be

monitored.

Analytics

PACE_003

AIA_003

AIA_004

AIA_005

PLATF_F_50

Req_063 ICARUS should have the ability to create edit

and run what if scenarios.
Analytics

AIA_013

AIA_016

PLATF_F_29

PLATF_F_30

PLATF_F_40

Req_064
ICARUS platform should provide information

about my data usage: which datasets, which

algorithms, which reports.

Analytics AIA_014 PLATF_F_45

Req_066 ICARUS should provide features for statistical

analyses.
Analytics

AIA_015

AIA_016

AIA_017

CEL_003

CEL_005

CEL_009

PLATF_F_29

PLATF_F_30

PLATF_F_40

Req_072 ICARUS should provide the last modification

time of each dataset.
Collection CEL_010

PLATF_F_01

PLATF_F_02

PLATF_F_48

Req_075 ICARUS should be able to anonymise data so

that legal regulations can be considered.
Collection

CEL_007

ISI_001

PLATF_F_08

PLATF_F_09

PLATF_F_10

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

31 / 113

3.1.2 Demonstrator Functional Requirements

As explained in section 2.3.2, the demonstrator functional requirements are depicting the expected

functionalities of the ICARUS platform from the demonstrator partners in order to facilitate the

execution of the applications that will be implemented by each demonstrator. It should be noted that

these requirements are more data related in this version of the deliverable. However, as the project

evolves and the demonstrators’ execution scenarios will be further detailed and clearly formed, these

requirements will evolve also.

The following table presents the elicited demonstrator functional requirements with the additional

management information:

Table 3-2: Demonstrator Functional Requirements

ID Description of the requirement Category
Related

User
Stories

Feature ID

Req_013 ICARUS should be able to support search for

historical flight information
Exploration

PACE_005

PACE_009

PLATF_F_22

PLATF_F_23

Req_014
ICARUS should be able to integrate flight

information data with flight number, airline,

date and time of departure/arrival.

Curation PACE_009

PLATF_F_11

PLATF_F_12

PLATF_F_13

Req_015
ICARUS should be able to integrate airport

weather data by period with airport identifier

(IATA/ICAO code, airport/city name).

Curation
PACE_010

CEL_003

PLATF_F_11

PLATF_F_12

PLATF_F_13

Req_021
ICARUS should be able to integrate airport

data with IATA/ICAO code, airport or city

name

Curation PACE_008

PLATF_F_11

PLATF_F_12

PLATF_F_13

Req_076 ICARUS should be able to assign costs to data

assets.
Sharing CEL_008

PLATF_F_56

PLATF_F_57

Req_077 ICARUS should provide features for different

forms of payments.
Sharing CEL_008

PLATF_F_56

PLATF_F_57

Req_078
ICARUS should provide the functionality to save

and restore user defined configurations for data

analysis.

Analytics
PACE_002

CEL_009
PLATF_F_43

Req_080 ICARUS platform should be able to perform

aggregations on data sets.
Collection ISI_001 PLATF_F_14

Req_082
ICARUS platform should be able to check that

the data usage and delivery is compliant to the

defined data access rights.

Analytics ISI_002 PLATF_F_32

Req_083 ICARUS platform should provide data cleaning

mechanisms.
Collection

PACE_018

ISI_003
PLATF_F_15

Req_084 ICARUS platform should provide mechanisms

for anonymisation and data cleaning
Collection

PACE_018

ISI_003

PLATF_F_10

PLATF_F_15

Req_085 The platform should be able to integrate data

sets based on common fields.
Linking ISI_001 PLATF_F_18

Req_086 ICARUS should support API for data export Collection
PACE_001

CEL_003

PLATF_F_01

PLATF_F_02

Req_087 ICARUS should support the provision of data

updates.
Collection PACE_016

PLATF_F_01

PLATF_F_02

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

32 / 113

ID Description of the requirement Category
Related

User
Stories

Feature ID

Req_025
ICARUS should be able to integrate obstacle

data with runways and runway data with

airports

Curation PACE_013

PLATF_F_11

PLATF_F_12

PLATF_F_13

Req_026
ICARUS should be able to combine airport

data, runway data and obstacle data and

download them as a file

Curation PACE_013

PLATF_F_11

PLATF_F_12

PLATF_F_13

Req_040 ICARUS should be able to support the upload

of external airport, runway and obstacle data
Collection PACE_021

PLATF_F_01

PLATF_F_02

Req_041 ICARUS should be able to support to upload

external airport weather data
Collection PACE_021

PLATF_F_01

PLATF_F_02

Req_048
ICARUS should be able to integrate flight

information data with internal AIA airport

data

Curation AIA_003

PLATF_F_11

PLATF_F_12

PLATF_F_13

Req_052
ICARUS should allow to use look up tables

(SXF is an IATA code for Berlin Schoenefeld

Airport)

Analytics AIA_012 PLATF_F_16

Req_065 ICARUS should be able to integrate aircraft on

ground data with ICAO category
Analytics AIA_015

PLATF_F_11

PLATF_F_12

PLATF_F_13

Req_067
ICARUS should provide means retrieve data

from Amadeus Airport Operational Database

(AODB)

Analytics AIA_017 PLATF_F_01

Req_068
ICARUS should be able to integrate flight

number with airport data like check in

counter, luggage information

Collection CEL_001

PLATF_F_11

PLATF_F_12

PLATF_F_13

Req_069
ICARUS should be able to integrate flight

number with security process information like

passport control or security scan.

Collection CEL_002

PLATF_F_11

PLATF_F_12

PLATF_F_13

Req_070
IARUS should be able to integrate airport

locations with weather data, current weather

as well as statistical weather

Collection CEL_003

PLATF_F_11

PLATF_F_12

PLATF_F_13

Req_071
ICARUS should be able to integrate flight

number with airport information and flight

plan data (e. g. delays)

Collection CEL_004

PLATF_F_11

PLATF_F_12

PLATF_F_13

Req_073 ICARUS should be able to integrate flight data

with connection flight information.
Collection CEL_005

PLATF_F_11

PLATF_F_12

PLATF_F_13

Req_074
ICARUS platform should be able to integrate

personal booking data with other data like

fight information data, airport data, etc..

Collection CEL_007

PLATF_F_11

PLATF_F_12

PLATF_F_13

Req_079
ICARUS platform should be able to integrate

route information with passenger

information.

Collection ISI_001

PLATF_F_11

PLATF_F_12

PLATF_F_13

Req_081 ICARUS platform should be able to integrate

passenger data with booking data
Collection ISI_002

PLATF_F_11

PLATF_F_12

PLATF_F_13

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

33 / 113

3.2 Non-functional Requirements

The following table presents the elicited non-functional requirements with the additional

management information:

Table 3-3: Non-functional Requirements

ID Description of the requirement Category
Related

User
Stories

Feature ID

Req_008 ICARUS platform should have high availability Reliability PACE_004

Req_044
ICARUS should support know-your-customer

practices, with organization registration and user

login with credentials

Security
PACE_023

AIA_002
PLATF_F_46

Req_088
ICARUS should support an extended list of

algorithms on a mixture of confidential and public

data in order to perform big data analytics

Functional

Suitability

PACE_006

PACE_020

PACE_023

AIA_002

ISI_002

PLATF_F_28

PLATF_F_31

PLATF_F_32

PLATF_F_36

Req_089 ICARUS should be able to execute big data

analytics in a timely and efficient manner

Performance

efficiency

PACE_004

PACE_010

AIA_017

ISI_005

PLATF_F_35

Req_090
ICARUS should guarantee the efficient and

effective resource allocation for the success

analytics jobs execution

Performance

efficiency

AIA_017

CEL_004
PLATF_F_35

Req_091 ICARUS should be able to handle and store large

datasets

Performance

efficiency

PACE_005

PACE_010

ISI_002

Req_092

ICARUS should enable the interconnection and

exchange of information with other platforms or

devices with appropriate secure mechanisms (e.g.

REST API)

Compatibility

PACE_001

PACE_011

PACE_017

PACE_023

AIA_002

PLATF_F_01

PLATF_F_02

Req_093
ICARUS should be able to support the functional

and flexible operation in a distributed cloud

infrastructure

Compatibility

Req_094
ICARUS should be able to consume and handle

different datasets in various formats (e.g. CSV,

JSON, XML files)

Compatibility

PACE_011

PACE_014

PACE_021

CEL_008

PLATF_F_02

PLATF_F_14

PLATF_F_41

PLATF_F_42

Req_095

ICARUS should provide an easy-to-use and user-

friendly interface in which the analytics and

visualisation processes are supported by guides

and manuals

Usability

AIA_006

AIA_015

AIA_016

AIA_017

CEL_009

ISI_007

PLATF_F_07

PLATF_F_56

Req_096 ICARUS should provide a user interface that

supports straightforward task accomplishment
Usability PACE_002

PLATF_F_29

PLATF_F_30

Req_097
ICARUS should provide easy navigation through

the platform features with support of dashboards

or wizard/guide

Usability

PACE_002

AIA_010

AIA_013

ISI_007

PLATF_F_31

PLATF_F_32

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

34 / 113

ID Description of the requirement Category
Related

User
Stories

Feature ID

Req_098 ICARUS should provide the suitable error

protection methods for all input fields
Usability

PACE_018

ISI_003

Req_099 ICARUS should enable the secure storage of assets

(datasets, reports, etc.)
Reliability PACE_020

PLATF_F_46

PLATF_F_47

Req_100 ICARUS should be able to handle simultaneous

requests on a timely and efficient manner
Reliability

PACE_004

CEL_004

Req_101 ICARUS should provide the mechanisms to

recover after system failure conditions
Reliability

Req_102
ICARUS should be able to handle software errors

without affecting the platform overall

functionality

Reliability

Req_103 ICARUS should ensure different authorisation

access to different datasets
Security

PACE_003

PACE_006

PACE_017

AIA_002

ISI_001

PLATF_F_04

PLATF_F_36

PLATF_F_47

Req_104 ICARUS should provide the appropriate logging

mechanisms for all operations
Security

PACE_017

AIA_014
PLATF_F_26

Req_105 ICARUS should be able to verify the identity of the

user/subject performing any operation
Security

PACE_017

AIA_014

Req_106 ICARUS should be able to trace all user/subject

operations
Security

PACE_017

AIA_014

Req_107 ICARUS should be composed by components that

are operating independently
Maintainability

Req_108 ICARUS should provide the tools that support

enhanced system monitoring and debugging
Maintainability

Req_109 ICARUS should provide a sophisticated alarm

mechanism to identify failures or deficiencies
Maintainability

PACE_018

ISI_003

Req_110 ICARUS should provide the proper mechanisms

for system upgrade with minimum downtime
Maintainability PACE_004

Req_111 ICARUS should offer easy installation process in a

timely manner
Portability

Req_112 ICARUS should support deployment on various

Linux distributions
Portability

Req_113
ICARUS should be composed by independent

components that are replaceable with minimum

impact and effort

Portability

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

35 / 113

4 ICARUS Technical Requirements

The previous section provided detailed descriptions of the functional, both platform- and

demonstrator-specific, and non-functional requirements that emerged during the requirement

elicitation process. As a next step, technical requirements have been extracted from each of the

aforementioned requirements individually and have subsequently been grouped into 72

requirements, as shown in section 4.1. These technical requirements will be leveraged in order to draft

the first conceptual ICARUS architecture, which will be presented in section 5.

4.1 List of technical requirements

For each of the identified technical requirements, the following table provides:

- A high-level categorisation based on the phases of the ICARUS methodology presented in D1.2,

where applicable

- A more fine-grained categorisation based on the requirement categories provided in Section 3

- A unique ID

- A description

- The relevant requirements from which it was extracted or more generally its origin, in case this is

not limited to the reported requirements in the previous section.

For the description, the following guidelines proposed in the ISO/IEC/IEEE 29148:2011 are adapted

and followed:

• Requirements that constitute mandatory binding provisions use ‘shall’.

• Statements of fact, futurity, or a declaration of purpose are non-mandatory, non-binding

provisions and use ‘will’. ‘Will’ can also be used to establish context or limitations of use.

However, ‘will’ can be construed as legally binding, so it is best to avoid using it for

requirements.

• Preferences or goals are desired, non-mandatory, non-binding provisions and use 'should’.

• Suggestions or allowances are non-mandatory, non-binding provisions and use 'may'.

• Non-requirements, such as descriptive text, use verbs such as ‘are’, ‘is’ and ‘was’. It is best to

avoid using the term ‘must', due to potential misinterpretation as a requirement.

• Positive statements are to be used, whereas negative requirements (such as ‘shall not’) are to

be avoided.

• Usage of active voice is preferred, whereas passive voice is to be avoided.

Following the above conventions, the phrasing of each requirement also serves as an implicit

prioritisation. The selection of the most appropriate phrasing for each requirement incorporates both

the importance of the relevant functional and non-functional requirements (as outlined during the

requirement elicitation stage), as well as an early technical feasibility assessment. However, as can be

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

36 / 113

seen in the following table, the majority of identified technical requirements is in the form of

mandatory binding provisions.

Table 4-1: Technical requirements

 ID Description of the requirement

Relevant
Functional &

Non-Functional
Requirements

Data Collection
Import &

Export

TR_001 The ICARUS platform shall allow data to be imported from

external sources.

Req_002,

Req_028,

Req_032,

Req_055,

Req_056,

Req_067

TR_002 The ICARUS platform shall allow the user to upload and

download files.

Req_022,

Req_026,

Req_040,

Req_041

TR_003 The ICARUS platform should offer a simplified data check-in

process for data that the providers intend to keep for

personal usage only.

Req_042

TR_004 The ICARUS platform should allow the user to save datasets

that are currently in a private analytics space on the central

platform storage.

Req_045

TR_005 The ICARUS platform shall offer a well-defined API for data

export.

Req_086

TR_006 The ICARUS platform shall support updating and maintaining

uploaded datasets.

Req_087

TR_007 The ICARUS platform should allow the user to choose in

which format to download data, when a transformation

service is available.

Req_024,

Req_094

TR_008 The ICARUS platform should provide a service that

transforms data from a format to another for selected

predefined data formats.

Req_023,

Req_094

TR_009 The import and export mechanisms of the ICARUS platform

should support large files.

Req_091

TR_010 The ICARUS platform should be able to consume data from

external RESTful APIs.

Req_056,

Req_092

TR_011 The ICARUS platform should support end-to-end data

encryption.

From external

stakeholders

during MVP

validation

interviews

TR_012 The ICARUS platform should support all data types described

in the data requirements reported in D1.1

D1.1 (also

relevant to

Req_013,

Req_014,

Req_015,

Req_021,

Req_025,

Req_048,

Req_065,

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

37 / 113

 ID Description of the requirement

Relevant
Functional &

Non-Functional
Requirements

Req_068,

Req_069,

Req_070,

Req_071,

Req_073,

Req_074,

Req_079,

Req_081)

TR_013 The ICARUS platform should allow users to choose which

field types in their datasets will be encrypted.

Stemming from

TR_011

Data

Cleansing

TR_014 The ICARUS platform should provide data cleansing

functionalities.

Req_037,

Req_083,

Req_084

Data

Anonymisati

on

TR_015 The ICARUS platform should provide a data anonymisation

tool / service.

Req_039,

Req_075,

Req_084

Data Enrichment
Data

Representati

on,

Semantics &

Metadata

TR_016 The ICARUS platform shall comply with a common

underlying metadata schema

Requirement

coming from and

clarified in D2.1

TR_017 The ICARUS platform shall comply with a common

underlying data model

Req_002,

Req_028,

Req_029,

Req_032,

Req_055

TR_018 The ICARUS platform shall ensure that external data being

imported in ICARUS are mapped to the ICARUS data model

(in a semi-automatic manner).

Req_002,

Req_028,

Req_029,

Req_032,

Req_055

TR_019 The ICARUS platform should provide the ability to data

providers to assign predefined and/or custom tags

(keywords) to their datasets.

Req_005,

Req_010

TR_020 The ICARUS platform shall offer a service that enriches

uploaded data based on information from certain

predefined controlled vocabularies (e.g. airport codes).

Req_030,

Req_052

TR_021 The ICARUS platform shall enable the users to assign IPR

related attributes to the datasets.

Req_038

TR_022 The ICARUS platform should provide predefined data license

templates

Req_034

TR_023 The ICARUS platform should allow data providers to

customise the provided data license templates.

Req_034,

Req_060

TR_024 The ICARUS platform shall allow the user to define and

configure a custom data license.

Req_034,

Req_060

TR_025 The ICARUS platform should store and show in an intuitive

manner provenance-related information, e.g. when a

dataset was last modified.

Req_072

TR_026 The ICARUS platform shall offer an interactive UI to let the

user browse the ICARUS data model.

Req_031,

Req_046,

Req_047

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

38 / 113

 ID Description of the requirement

Relevant
Functional &

Non-Functional
Requirements

TR_027 The ICARUS platform should support a model lifecycle

management service that enables the user to recommend

extensions to the data model.

Req_031,

Req_046,

Req_047

TR_028 The ICARUS platform should support a process / service to

enable the ICARUS administrator to review the data model

recommendations and approve or decline them.

Req_031,

Req_046,

Req_047

Asset Exploration and Extraction

Search TR_029 The ICARUS platform shall support search functionality over

the datasets to allow the user to find datasets by type,

keyword, date, time.

Req_006,

Req_009,

Req_010,

Req_011,

Req_012

TR_030 The ICARUS platform should save the query history of the

user and allow the user to review it.

Req_020

TR_031 The ICARUS platform shall retrieve and show the datasets

that are relevant to a dataset that is returned as a query

result.

Req_024,

Req_047

TR_032 The ICARUS platform should provide a mechanism for

identifying connections among datasets based on their

mapping to the common underlying data schema/model.

Req_043

TR_033 The ICARUS platform should allow for spatiotemporal

information to be un-encrypted in the datasets so that

search queries can be performed on it.

Req_012

Data Sharing TR_034 The ICARUS platform shall provide an information catalogue

about all datasets that are open or available for sharing (by

their respective data providers).

Req_057

TR_035 The ICARUS platform shall enable the creation of data

sharing contracts with detailed terms in an immutable

manner.

Req_059

TR_036 The ICARUS shall provide walkthroughs and guidelines

regarding the creation of data sharing contracts.

Req_059

TR_037 The ICARUS platform shall allow users to set pricing terms for

their datasets.

Req_076

TR_038 The ICARUS platform should support various payment

methods.

Req_077

TR_039 The ICARUS platform should provide a mechanism for data

providers and data consumers to negotiate prior to signing

the data sharing contract.

Req_036

TR_040 The ICARUS platform may allow existing, active data

contracts (traditionally signed by a data provider) to be

facilitated / executed by the platform.

From external

stakeholders

during MVP

validation

interviews

TR_041 The ICARUS platform shall allow users to request to purchase

and to access datasets not owned by them

Requirement

coming from and

clarified in D2.2

TR_042 The ICARUS platform shall allow users to accept or deny

requests for access on their datasets made by other users

Requirement

coming from and

clarified in D2.2

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

39 / 113

 ID Description of the requirement

Relevant
Functional &

Non-Functional
Requirements

TR_043 The ICARUS platform shall store the data sharing contracts in

a DLT-based repository for non-repudiation purposes.

From external

stakeholders

during MVP

validation

interviews

Data Analysis & Visualisation

Analysis &

Visualisation

TR_044 The ICARUS platform should provide a UI that allows the user

to define, configure, review and manage data analysis jobs

and save configurations for later re-usage.

Req_003,

Req_055,

Req_078

TR_045 The ICARUS platform shall enable the integration and

combined analysis over multiple datasets.

Req_007

TR_046 The ICARUS platform should allow the easy configuration

and application of advanced data analysis algorithms.

Req_018,

Req_019,

Req_088

TR_047 The ICARUS platform shall enable the application of

predefined data analysis algorithms on datasets.

Req_019

TR_048 The ICARUS platform should support the combination

(merging) of datasets based on common fields into one

dataset.

Req_027,

Req_026,

Req_085

TR_049 The ICARUS platform should provide a monitoring UI for the

progress and status of data analysis jobs.

Req_062

TR_050 The ICARUS platform should provide tools/services to define

and execute what-if scenarios on the datasets.

Req_063

TR_051 The ICARUS platform shall provide tools and services to apply

machine learning algorithms

Requirement

coming from and

clarified in D2.2

TR_052 The ICARUS platform should provide tools and services to

apply deep learning algorithms

Requirement

coming from and

clarified in D2.2

TR_053 The ICARUS platform shall provide tools and services to apply

basic analytics

Requirement

coming from and

clarified in D2.2

TR_054 The ICARUS platform should provide tools and services that

enable users to perform statistical analysis over datasets

Req_066

TR_055 The ICARUS platform should offer data management

methods and algorithms that handle both structured and

unstructured data.

Req_050

TR_056 The ICARUS platform shall offer data visualisation tools/

functionalities.

Req_051,

Req_053

TR_057 The ICARUS platform shall enable the users to define and

schedule data analysis jobs.

Req_054

TR_058 The ICARUS platform should enable the users to define,

configure and schedule data management and processing

recipes

From MVP

TR_059 The ICARUS platform should allow a user to easily perform

aggregations on a dataset.

Req_080

TR_060 The ICARUS platform shall support analytics jobs in a scalable

and reliable manner

Req_089

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

40 / 113

 ID Description of the requirement

Relevant
Functional &

Non-Functional
Requirements

TR_061 The ICARUS platform should provide tools and services to

perform resource allocation for data analysis purposes.

Req_090

Added value services and platform features
Notifications TR_062 The ICARUS platform shall allow users to manage their

notification preferences.

Req_001,

Req_033,

Req_049

TR_063 The ICARUS platform should inform users with active

contracts on a dataset that the dataset has been updated.

Req_001,

Req_033

TR_064 The ICARUS platform should provide notifications to inform

users when their scheduled analytics jobs finish.

Req_049,

Req_061

Usage

Analytics

TR_065 The ICARUS platform should provide data usage analytics to

the users for the datasets they own.

Req_035,

Req_064

Security and

Privacy

TR_066 The ICARUS platform shall provide public, private and

confidential working spaces.

Req_004

TR_067 The ICARUS platform shall ensure that access control over

datasets is applied according to the data provider's policies

and the terms of relevant active valid data sharing contracts.

Req_016,

Req_082

TR_068 The ICARUS platform shall forbid unauthorised user access

to the platform and the datasets.

Req_044

TR_069 The ICARUS platform storage shall be secure. Req_099

TR_070 The ICARUS platform should ensure different authorisation

levels for accessing datasets.

Req_017,

Req_088,

Req_103

TR_071 The ICARUS platform should be able to verify the identity of

the user/subject performing any operation in the platform.

Req_105

TR_072 The ICARUS platform shall provide a secure and controlled

registration process for new users

Requirement

coming from and

clarified in D2.2

4.2 Mapping of technical requirements and ICARUS stakeholders

The work reported in the current deliverable regarding requirements elicitation cannot be viewed

independently from the extracted MVP features that were reported in D1.2. In fact, there are strong

links between the extracted technical requirements described above and the identified MVP features.

This was both expected and desired, as it constitutes a confirmation of the requirements’ validity. The

following table shows how the MVP features map to the technical requirements.

Table 4-2: Mapping of MVP features to Technical Requirements

MVP Features Technical Requirements
PLATF_F_01, PLATF_F_02, PLATF_F_11, PLATF_F_13,

PLATF_F_14, PLATF_F_27, PLATF_F_41

TR_001, TR_002, TR_003, TR_004, TR_005, TR_006,

TR_007, TR_008, TR_009, TR_010, TR_011, TR_012,

TR_013

PLATF_F_15 TR_014

PLATF_F_09 TR_015

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

41 / 113

MVP Features Technical Requirements
PLATF_F_20, PLATF_F_21, PLATF_F_56 TR_016, TR_017, TR_018, TR_019, TR_020, TR_021,

TR_022, TR_023, TR_024, TR_025, TR_026, TR_027,

TR_028

PLATF_F_18, PLATF_F_22, PLATF_F_25, PLATF_F_26,

PLATF_F_51

TR_029, TR_030, TR_031, TR_032, TR_033

PLATF_F_57, PLATF_F_60, PLATF_F_61 TR_034, TR_035, TR_036, TR_037, TR_038, TR_039,

TR_040, TR_041, TR_042, TR_043

PLATF_F_14, PLATF_F_35, PLATF_F_38, PLATF_F_43,

PLATF_F_44, PLATF_F_39, PLATF_F_40

TR_044, TR_045, TR_046, TR_047, TR_048, TR_049,

TR_050, TR_051, TR_052, TR_053, TR_054, TR_055,

TR_056, TR_057, TR_058, TR_059, TR_060, TR_061

PLATF_F_48, PLATF_F_49 TR_062, TR_063, TR_064

PLATF_F_45 TR_065

It should be noted that there are four MVP features defined and described in D1.2 which do not appear

in the previous table, as they are not covered by the extracted technical requirements. Specifically:

PLATF_F_06: (Semi-)Automatic quality check of the data and assessment of quality level.

Ensuring data quality remains a valid and also intuitive requirement for the ICARUS offering and has

emerged in the context of the functional requirements reported in section 3 (e.g. Req_037). However,

the way this will be addressed needs to be further examined in terms both of the algorithmic/

methodological approach that is more suitable for ICARUS and of the technical feasibility of the

solution that will be selected. Hence, the relevant technical requirements will be part of the next

requirements extraction phase (to be reported in D3.3).

PLATF_F_31: Automatic check whether the data asset is appropriate for a specific algorithm.

Depending on the sophistication level of the solution that will be followed in ICARUS to implement

this feature, the appropriate technical requirements will be extracted in the next phase and reported

in D3.3. The dependency of this feature on other data analysis related features does not allow the

definition of concrete requirements, until the design (and possibly implementation) of those has

progressed.

PLATF_F_32: Automatic check for data licenses compatibility to run under a specific algorithm.

The explanation provided for PLATF_F_31 above is also valid here.

PLATF_F_55: Automatic license compatibility check for data assets that build on other datasets.

The explanation provided for PLATF_F_31 and PLATF_F_32 above is also valid here. Moreover, the

complexity of the underlying problem, which has been discussed in D2.2, requires further studying

and exploration in order to achieve a level of specificity that will allow the extraction of technical

requirements.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

42 / 113

5 ICARUS Platform Architecture

5.1 Conceptual architecture

The conceptual architecture of ICARUS has been designed by conducting a thorough analysis of the

technical requirements documented in section 4 that were later translated into technological, beyond

the state of the art, software modules that will be implemented in the context of WP4. The conceptual

architecture of ICARUS is supporting the smooth and effective integration of the several software

modules that will be implemented with the aim of maximising the benefits of combining multiple

technologies and tools from different partners and organisations. During the design process, concerns

and decisions were weighted, and the stakeholder requirements were constantly validated against

the design.

The ICARUS architecture is a modular architecture that provides enhanced flexibility in order to adapt

and connect the various components that will be implemented as software modules. The major focus

was on the functional decomposition, the strict separation of concerns, the dependencies

identification and especially the data flow. As such, each component has been designed with the aim

of delivering specific business services with a clear context, scope and set of features. Components

were assigned to the different technical partners that were involved in the analysis of the

requirements, the shaping of the conceptual architecture and the design of the individual

components. The technical requirements and the functional specifications were carefully analysed

and facilitated the evolution of a mature concept architecture design that is aiming to address the

ambition of ICARUS to deliver a novel big data platform for the aviation data value chain.

The main challenge of the ICARUS architecture is to provide a scalable and flexible environment that

will enable the interoperability of the various components that facilitate the execution of big data

analytics and sharing of data through secure, transparent and advanced functionalities and features.

To achieve this, all components of the ICARUS architecture will provide well-defined interfaces to

ensure the seamless integration and operation of the integrated platform.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

43 / 113

Figure 5-1: ICARUS conceptual architecture

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

44 / 113

The ICARUS architecture is conceptually divided in three main tiers, the On Premise Environment, the

Core ICARUS platform and the Secure and Private Space. Each tier is undertaking a set of

functionalities of the ICARUS platform depending on the execution environment and context. The

ICARUS conceptual architecture is illustrated in Figure 5-1.

The On Premise Environment is composed by multiple components running on the data provider’s

environment with the main purpose to prepare the data provider’s private or confidential datasets in

order to be uploaded in the ICARUS platform. The On Premise Environment performs the tasks

according to the instructions provided by the Core ICARUS platform. To achieve this, the Master /

Worker paradigm is utilised. More specifically, the OnPremise Worker running on the On Premise

Environment receives a set of instructions from the Master Controller running on the Core ICARUS

platform in order to perform a set of tasks. The OnPremise Worker is responsible for completing these

tasks by utilising the set of components running on the On Premise Environment for each specific task.

At first, the Cleanser provides the data cleansing functionalities of the platform. The Cleanser supports

a set of techniques for performing simple and more advanced cleansing operations over datasets that

contain erroneous or “dirty” data by detecting or correcting corrupted, incomplete, incorrect and

inaccurate records from datasets with a variety of rules and constraints. The Mapper is responsible

for the harmonisation process of the dataset by enabling the user to define the mapping of the fields

of the dataset to the ICARUS common aviation model in a semi-automatic way. Moreover, the Mapper

enables the exploration of the ICARUS common aviation model from the user in order to provide

suggestions for possible extensions of the model. The Anonymiser is providing the data anonymisation

functionalities in order to filter or hide the private, sensitive or personal data that cannot be disclosed

outside the data provider’s premises, corporate network or personal filesystem by providing the

means to deal with privacy issues and protection of sensitive information with a variety of techniques

such as data masking, data encryption and data scrambling.

The Wallet Manager is facilitating the operation of the Data License and Agreement Manager by

providing a set of functionalities such as the generation and management of the blockchain account

of the user and the interaction with the blockchain for the smart contract signature process. The

Encryption Manager is undertaking all essential encryption processes with regard to encryption of the

data provider’s dataset. It provides the encryption cypher mechanism that generates the encryption

key and the encrypted dataset, while also facilitating the dataset sharing, upon the agreement of the

data provider and the data consumer, with the generation of the appropriate decryption keys, the

storage and management of the generated decryption keys and the secure transmission of the

corresponding decryption key from the data provider to the data consumer. The Decryption Manager

is enabling the decryption of the dataset on the On Premise Environment when an encrypted dataset

is downloaded locally, provided that a valid smart contract exists permitting the downloading of the

specific dataset locally. The Decryption Manager provides the mechanisms to verify the identity of the

data consumer via a certificate or public key, to request for the decryption key from the data provider

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

45 / 113

and the decryption mechanism in order to temporarily reproduce the encryption key in order to

decrypt the dataset.

The Core ICARUS platform is composed by multiple interconnected components running on the

ICARUS infrastructure. The Master Controller is responsible for compiling and providing a set of

instructions to be executed by the OnPremise Worker and the SecureSpace Worker following the

Master / Worker paradigm as explained also above. The Master Controller will submit the set of

instructions in the form of jobs that will be executed by the corresponding workers running on the On

Premise Environment and the Secure and Private Space and both workers will execute the requested

jobs with the usage of the set of components that are running on both environments.

The Data Handler is responsible for receiving the incoming data provider’s private or confidential

dataset as produced within the On Premise Environment. Additionally, the Data Handler is facilitating

the download and upload of datasets from the open data sources by providing the necessary

mechanisms to connect and retrieve the corresponding datasets based on the provided configuration.

For the datasets originating from open data sources the Data Handler utilises the local running

instance of the Mapper in order to perform the harmonisation process for these datasets in the same

manner as it performed on the On Premise Environment for the private and confidential datasets. The

Data License and Agreement Manager is implementing the blockchain functionalities of the ICARUS

platform which hosts a local blockchain node. Moreover, it provides the processes needed for the

preparation of a smart contract that is uploaded in the blockchain and it is activated when both parties

(data owner and data consumer) come to an agreement and the corresponding payment is completed.

The Key Pair Administrator is performing the signalling operations for the exchange of the decryption

key between the data provider and the data consumer. In addition to this, the Key Pair Administrator

is responsible for maintaining the list of data providers in order to support the signalling operations

for the key exchange, as well as to perform and support the revocation process of any key when

needed. The Policy Manager is implementing the access control mechanism of the ICARUS platform

that is based on the ABAC model and XACML standard. To meet its goals, it provides the suitable

methods for the creation, management and deletion of access control policies. The Policy Manager

and Controller is intercepting all requests for resource access in order to form an access control

decision. The ICARUS Storage and Indexing component is providing the storage capabilities of the

ICARUS platform. It consists of big-data enabled storage solutions, capable of storing and managing

large amount of data in structured or unstructured format. As with any big data ecosystem, the

storage solution provides a set of key characteristics such as horizontal scalability, high availability,

high performance and advanced security. Additionally, it provides the indexing capabilities of the

platform over multiple complex datasets with flexibility and efficiency.

The Query Explorer encapsulates the intuitive environment that facilitates a data query definition

with enhanced functionalities such as dynamic field selection and filter definition. The Query Explorer

is responsible for the query transformation to the underlying query language of the respective storage

solution. It enables the query execution and the display of the results in a user-friendly way, while also

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

46 / 113

supporting the retrieval and display of the proper recommendations through the Recommender. The

Recommender is providing the enhanced recommendation functionalities that enable the dataset

exploration and discoverability. The Recommender provides recommendations and suggestions for

additional related datasets that can be explored or utilised during the search and query process.

The Analytics and Visualisation Workbench is providing the environment where the users of the

platform are able to design, execute and monitor the data analytics workflows and also where the

visualisation and dashboards are displayed. The users are able to select an algorithm from the

extended list of supported algorithms and set the corresponding parameters according to their needs.

While the design of the data analytics workflow is performed in the Analytics and Visualisation

Workbench, the execution of the analysis is performed within the Secure and Private Space with the

use of the Master Controller and the SecureSpace Worker. Furthermore, through the Analytics and

Visualisation Workbench the advanced visualisation capabilities of the platform are offered with a

variety of visualisations that can be combined in order to form dynamic dashboards upon the user

needs. Additionally, the user is able to create an ICARUS application, which contains the list of datasets

that were selected for analysis, as well as the algorithm along with the corresponding parameters, and

store it in the BDA Application Catalogue. The BDA Application Catalogue implements a repository of

the ICARUS applications created by the users of the platform. As such, the ICARUS applications can be

stored, retrieved, modified and loaded in the Analytics and Visualisation Workbench by the users at

any time. The purpose of the BDA Application Catalogue is to enable the reuse of the designed data

analytics workflows from the users, as well as the sharing of these workflows among the users through

a defined license in order to empower the analytical capabilities of the platform.

In addition to the aforementioned components, the ICARUS platform is supported by supplementary

components with the aim of providing added-value services to the users of the platform. The

Notifications Manager is responsible for providing the updated information to the users with regards

to the datasets or the scheduled analytics jobs. More specifically, the Notifications Manager provides

notifications to the users related to the availability of new datasets according to their configured

preferences or any possible updates on the datasets that the users are entitled to use, as well as any

updates on the execution status of the scheduled analytics jobs. The Usage Analytics component is

responsible for providing the tools that collect, analyse and visualise the usage of the various services

and assets of the platform in order to extract useful insights and statistics. The Usage Analytics records

the user’s behaviour in various levels such as the usage and adoption of specific features or services

and the usage of each dataset or algorithm towards the aim of providing usage information to both

the users and the platform administrator.

The Resource Orchestrator is enabling the provisioning and management of the Secure and Private

Space. More specifically, the Resource Orchestrator is able to connect to the virtualised infrastructure

in order to perform monitoring and management of the available resources, to allocate and release

the resource in the corresponding virtual machines, as well as deploy and manage the applications

and services running on the virtual machines. Finally, the Resource Orchestrator is performing

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

47 / 113

enhanced service monitoring and health checks on the services or applications running on the virtual

machines.

As such, the Secure and Private Space is realised in the form of dedicated virtual machines that are

spawned on demand so that each user is able to perform analysis in an isolated and secure

environment. The Secure and Private Space contains a set of interconnected components that

constitute the advanced analytics execution environment of the ICARUS platform. The SecureSpace

Worker running on the Secure and Private Space receives a set of instructions from the Master

Controller running on the Core ICARUS platform in order to perform the specified jobs. The

SecureSpace Worker undertakes the responsibility of executing the scheduled jobs with the use of a

set of components running on the Secure and Private Space. At first, the decryption of the dataset on

the data consumer side is handled by the Decryption Manager. As described above, the Decryption

Manager performs the data consumer’s identity verification, the request for the decryption key

exchange and eventually the decryption of the encrypted dataset via the dedicated decryption

mechanism on the Secure and Private Space. Once an analysis is triggered by the Analytics and

Visualisation Workbench, the Job Scheduler and Execution Engine is responsible for the initiation and

monitoring of the corresponding job and for providing the relevant status, as well as the analysis

results, in the Analytics and Visualisation Workbench in order to be displayed to the users. The Job

Scheduler and Execution Engine is interacting with the Execution Cluster for the job execution. The

Execution Cluster is the cluster-computing framework of the platform offering the processing engine

for the data analysis across multiple datasets with a set of key characteristics such as speed, efficiency,

reliability, fault tolerance and effective distributed job execution. The processing engine supports the

execution of a large list of big data analysis algorithms that spans from simple statistical analysis to

machine learning algorithms. The results of the analysis are passed to the Encryption Manager in

order to be encrypted before they are securely transmitted and stored in the Core ICARUS platform.

In the following subsection, the mapping of the technical requirements that were documented in

section 4.1 and the components of the ICARUS platform architecture that was described in the current

section, as a result of the thorough analysis of these requirements, is presented.

5.2 Mapping Technical Requirements to Components

In the previous section the ICARUS modular conceptual architecture was presented. This modular

architecture is composed by multiple components, each one designed with a distinct role, scope and

a set of core functionalities towards the aim of providing a novel big data platform for the aviation

data value chain. As already described, the design of these components, as well as of the holistic

platform architecture, was a result of the analysis of the technical requirements and multiple

iterations in the design process in order to ensure that the technical requirements have been

addressed. The following table summarises the mapping of these technical requirements with the

designed components.

Table 5-1: Mapping of technical requirements to components

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

48 / 113

ID Description of the requirement Component
TR_001 The ICARUS platform shall allow data to be imported from

external sources.
Data Handler

TR_002 The ICARUS platform shall allow the user to upload and download
files.

Data Handler

TR_003 The ICARUS platform should offer a simplified data check-in
process for data that the providers intend to keep for personal
usage only.

Data Handler

TR_004 The ICARUS platform should allow the user to save datasets that
are currently in a private analytics space on the central platform
storage.

Data Handler, SecureSpace
Worker

TR_005 The ICARUS platform shall offer a well-defined API for data export. Data Handler
TR_006 The ICARUS platform shall support updating and maintaining

uploaded datasets.
Data Handler

TR_007 The ICARUS platform should allow the user to choose in which
format to download data, when a transformation service is
available.

-

TR_008 The ICARUS platform should provide a service that transforms
data from a format to another for selected predefined data
formats.

-

TR_009 The import and export mechanisms of the ICARUS platform should
support large files.

Data Handler, Storage and
Indexing

TR_010 The ICARUS platform should be able to consume data from
external RESTful APIs.

Data Handler

TR_011 The ICARUS platform should support end-to-end data encryption. Encryption Manager,
Decryption Manager, Key

Pair Administrator
TR_012 The ICARUS platform should support all data types described in

the data requirements reported in D1.1
Mapper, Storage and

Indexing
TR_013 The ICARUS platform should allow users to choose which field

types in their datasets will be encrypted.
Encryption Manager

TR_014 The ICARUS platform should provide data cleansing
functionalities.

Cleanser

TR_015 The ICARUS platform should provide a data anonymisation tool /
service.

Anonymiser

TR_016 The ICARUS platform shall comply with a common underlying
metadata schema

Query Explorer

TR_017 The ICARUS platform shall comply with a common underlying data
model

Query Explorer, Mapper

TR_018 The ICARUS platform shall ensure that external data being
imported in ICARUS are mapped to the ICARUS data model (in a
semi-automatic manner).

Data Handler,
Mapper

TR_019 The ICARUS platform should provide the ability to data providers
to assign predefined and/or custom tags (keywords) to their
datasets.

Data Handler

TR_020 The ICARUS platform shall offer a service that enriches uploaded
data based on information from certain predefined controlled
vocabularies (e.g. airport codes).

Mapper

TR_021 The ICARUS platform shall enable the users to assign IPR related
attributes to the datasets.

Data Handler, Data License
and Agreement Manager

TR_022 The ICARUS platform should provide predefined data license
templates

Data License and
Agreement Manager

TR_023 The ICARUS platform should allow data providers to customise
the provided data license templates.

Data License and
Agreement Manager

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

49 / 113

ID Description of the requirement Component
TR_024 The ICARUS platform shall allow the user to define and configure

a custom data license.
Data License and

Agreement Manager
TR_025 The ICARUS platform should store and show in an intuitive

manner provenance-related information, e.g. when a dataset was
last modified.

Data Handler

TR_026 The ICARUS platform shall offer an interactive UI to let the user
browse the ICARUS data model.

Mapper

TR_027 The ICARUS platform should support a model lifecycle
management service that enables the user to recommend
extensions to the data model.

Mapper

TR_028 The ICARUS platform should support a process / service to enable
the ICARUS administrator to review the data model
recommendations and approve or decline them.

Mapper

TR_029 The ICARUS platform shall support search functionality over the
datasets to allow the user to find datasets by type, keyword, date,
time.

Query Explorer

TR_030 The ICARUS platform should save the query history of the user and
allow the user to review it.

Query Explorer

TR_031 The ICARUS platform shall retrieve and show the datasets that are
relevant to a dataset that is returned as a query result.

Query Explorer,
Recommender

TR_032 The ICARUS platform should provide a mechanism for identifying
connections among datasets based on their mapping to the
common underlying data schema/model.

Query Explorer, Mapper

TR_033 The ICARUS platform should allow for spatiotemporal information
to be un-encrypted in the datasets so that search queries can be
performed on it.

Query Explorer, Encryption
Manager

TR_034 The ICARUS platform shall provide an information catalogue
about all datasets that are open or available for sharing (by their
respective data providers).

Query Explorer

TR_035 The ICARUS platform shall enable the creation of data sharing
contracts with detailed terms in an immutable manner.

Data License and
Agreement Manager,

Wallet Manager
TR_036 The ICARUS shall provide walkthroughs and guidelines regarding

the creation of data sharing contracts.
Data License and

Agreement Manager
TR_037 The ICARUS platform shall allow users to set pricing terms for their

datasets.
Data License and

Agreement Manager
TR_038 The ICARUS platform should support various payment methods. -
TR_039 The ICARUS platform should provide a mechanism for data

providers and data consumers to negotiate prior to signing the
data sharing contract.

Data License and
Agreement Manager

TR_040 The ICARUS platform may allow existing, active data contracts
(traditionally signed by a data provider) to be facilitated /
executed by the platform.

Data License and
Agreement Manager,

Wallet Manager
TR_041 The ICARUS platform shall allow users to request to purchase and

to access datasets not owned by them
Data License and

Agreement Manager, Policy
Manager

TR_042 The ICARUS platform shall allow users to accept or deny requests
for access on their datasets made by other users

Data License and
Agreement Manager,

Wallet Manager, Policy
Manager

TR_043 The ICARUS platform shall store the data sharing contracts in a
DLT-based repository for non-repudiation purposes.

Data License and
Agreement Manager,

Wallet Manager

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

50 / 113

ID Description of the requirement Component
TR_044 The ICARUS platform should provide a UI that allows the user to

define, configure, review and manage data analysis jobs and save
configurations for later re-usage.

Analytics and Visualisation
Workbench, BDA

Application Catalogue
TR_045 The ICARUS platform shall enable the integration and combined

analysis over multiple datasets.
Analytics and Visualisation
Workbench, Job Scheduler

and Execution Engine,
Mapper

TR_046 The ICARUS platform should allow the easy configuration and
application of advanced data analysis algorithms.

Analytics and Visualisation
Workbench

TR_047 The ICARUS platform shall enable the application of predefined
data analysis algorithms on datasets.

Analytics and Visualisation
Workbench, BDA

Application Catalogue
TR_048 The ICARUS platform should support the combination (merging)

of datasets based on common fields into one dataset.
Analytics and Visualisation
Workbench, Job Scheduler

and Execution Engine,
Mapper

TR_049 The ICARUS platform should provide a monitoring UI for the
progress and status of data analysis jobs.

Analytics and Visualisation
Workbench, Job Scheduler

and Execution Engine
TR_050 The ICARUS platform should provide tools/services to define and

execute what-if scenarios on the datasets.
Analytics and Visualisation
Workbench, Job Scheduler

and Execution Engine
TR_051 The ICARUS platform shall provide tools and services to apply

machine learning algorithms
Analytics and Visualisation
Workbench, Job Scheduler

and Execution Engine
TR_052 The ICARUS platform should provide tools and services to apply

deep learning algorithms
Analytics and Visualisation
Workbench, Job Scheduler

and Execution Engine
TR_053 The ICARUS platform shall provide tools and services to apply

basic analytics
Analytics and Visualisation
Workbench, Job Scheduler

and Execution Engine
TR_054 The ICARUS platform should provide tools and services that

enable users to perform statistical analysis over datasets
Analytics and Visualisation
Workbench, Job Scheduler

and Execution Engine
TR_055 The ICARUS platform should offer data management methods and

algorithms that handle both structured and unstructured data.
Analytics and Visualisation
Workbench, Job Scheduler

and Execution Engine
TR_056 The ICARUS platform shall offer data visualisation tools/

functionalities.
Analytics and Visualisation

Workbench
TR_057 The ICARUS platform shall enable the users to define and schedule

data analysis jobs.
Analytics and Visualisation
Workbench, Job Scheduler

and Execution Engine
TR_058 The ICARUS platform should enable the users to define, configure

and schedule data management and processing recipes
Analytics and Visualisation
Workbench, Job Scheduler
and Execution Engine, BDA

Application Catalogue
TR_059 The ICARUS platform should allow a user to easily perform

aggregations on a dataset.
Analytics and Visualisation
Workbench, Job Scheduler

and Execution Engine
TR_060 The ICARUS platform shall support analytics jobs in a scalable and

reliable manner
Analytics and Visualisation
Workbench, Job Scheduler

and Execution Engine

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

51 / 113

ID Description of the requirement Component
TR_061 The ICARUS platform should provide tools and services to perform

resource allocation for data analysis purposes.
Resource Orchestrator

TR_062 The ICARUS platform shall allow users to manage their notification
preferences.

Notification Manager

TR_063 The ICARUS platform should inform users with active contracts on
a dataset that the dataset has been updated.

Notification Manager

TR_064 The ICARUS platform should provide notifications to inform users
when their scheduled analytics jobs finish.

Notification Manager

TR_065 The ICARUS platform should provide data usage analytics to the
users for the datasets they own.

Usage Analytics

TR_066 The ICARUS platform shall provide public, private and confidential
working spaces.

Resource Orchestrator

TR_067 The ICARUS platform shall ensure that access control over
datasets is applied according to the data provider's policies and
the terms of relevant active valid data sharing contracts.

Data License and
Agreement Manager,

Wallet Manager, Policy
Manager

TR_068 The ICARUS platform shall forbid unauthorised user access to the
platform and the datasets.

Data License and
Agreement Manager,

Wallet Manager, Policy
Manager, Storage and

Indexing
TR_069 The ICARUS platform storage shall be secure. Storage and Indexing
TR_070 The ICARUS platform should ensure different authorisation levels

for accessing datasets.
Policy Manager

TR_071 The ICARUS platform should be able to verify the identity of the
user/subject performing any operation in the platform.

Policy Manager, Data
License and Agreement

Manager
TR_072 The ICARUS platform shall provide a secure and controlled

registration process for new users
Policy Manager

It should be noted that there are three technical requirements from the list of requirements

documented in section 4.1, that are not addressed by any of the designed components. Specifically:

TR_007: The ICARUS platform should allow the user to choose in which format to download data,

when a transformation service is available.

Although the ICARUS platform will allow the downloading of datasets from the data consumer locally,

if the license associated with the respective dataset permits this action, enabling the transformation

of the stored datasets to multiple formats needs to be further examined in terms of the technical

feasibility of the transformation of the datasets between various formats. The restrictions imposed by

the nature and the structure of each possible dataset do not allow the definition of a solid process

that can be selected until the design (and possibly implementation) of the components has

progressed. Hence, the relevant technical requirement will be addressed in the upcoming versions of

the architecture.

TR_008: The ICARUS platform should provide a service that transforms data from a format to another

for selected predefined data formats.

The explanation provided for TR_008 above is also valid here.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

52 / 113

TR_038: The ICARUS platform should support various payment methods.

While the ICARUS platform will support the definition of license and pricing related metadata for the

incorporated dataset, as well as the creation, negotiation and signing of smart contracts within the

platform, the support for payment methods within the ICARUS platform or with the integration of a

third-party payment system is a rather complex problem that requires studying and exploration before

the appropriate solution is selected. Hence, the relevant technical requirement will be properly

addressed in the upcoming versions of the architecture.

In the following subsections, the design and functionalities of the individual components, as well as

the addressed requirements by each component, are described.

5.3 ICARUS Components

5.3.1 Anonymiser

5.3.1.1 Design and Functionalities overview

The Anonymiser is the component responsible for providing the data anonymisation functionalities of

the ICARUS platform. Residing at the location of the datasets, the Anonymiser ensures that any kind

of private, sensitive or personal information will not be disclosed outside the data provider’s premises.

Hence, the purpose of the Anonymiser is to deal with the various privacy concerns and legal limitations

by employing a privacy and anonymisation toolset with various data anonymisation techniques that

will filter the information according to the stakeholders’ needs. The Anonymiser will be deployed

within the On Premise Environment in order to be utilised within the data provider’s premises.

In order to comply to the extent possible with the General Data Protection Regulation (GDPR)

(Regulation (EU) 2016/679) and protect the data privacy several challenges arise in every big data and

cloud ecosystem, the Anonymiser addresses the risk of unintended disclosure of personal or corporate

information when data need to uploaded or shared on the ICARUS platform, in which sensitive

variables (attributes) of the datasets must be handled properly in order to remove or hide the

individual’s identifying information in a way that the remaining information cannot be linked to the

individual. However, during the anonymisation process that will be applied, a balance between data

privacy and data utility should be considered in order to maintain the usability of the data.

The Anonymiser receives datasets from the data provider and provides an easy user interface in order

to select, configure and customise the various models and methods according to the stakeholder’s

needs and required anonymisation level. The Anonymiser will apply the selected models and methods

on the dataset, either on a field-level or on a dataset-level and will ensure that individual’s identifying

information cannot be re-identified. The results of the process are presented to the data provider in

order to review the results and possibly perform fine tuning on the selected methods and techniques

before the results are finalised. The data provider is responsible for the assessment of the results of

the anonymisation process based on his deep understanding of his dataset in terms of the privacy

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

53 / 113

threat risks and the usability of the produced anonymised data. The Anonymiser will be able to receive

and process datasets originating from a variety of data sources, including databases, local files or APIs

in order to perform the desired anonymisation process.

Figure 5-2: Anonymiser overview

The main functionalities of the Anonymiser are the following:

• Handle the various privacy concerns and sensitive information limitations to eliminate the

unintended disclosure of personal or corporate information

• Employ a privacy and anonymisation toolset with a variety of privacy models such as the K-

anonymity, the L-diversity and T-closeness models and anonymisation techniques such as the

Generalisation, Aggregation, Suppression, Categorisation, Randomisation, Pseudo-

anonymisation, and Data Perturbation.

• Handle and process datasets originating from various data sources and provide the

anonymised datasets.

5.3.1.2 Addressed requirements

The Anonymiser with the set of functionalities described in the component’s design addresses the

following requirements from the list of technical requirements that are documented in section 4.1:

• TR_015: The Anonymiser offers a toolbox capable of addressing the data anonymisation

requirements of the ICARUS stakeholders with a variety of methods and techniques that can

be applied on the selected dataset.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

54 / 113

5.3.2 Cleanser

5.3.2.1 Design and Functionalities overview

The Cleanser is the component undertaking the responsibility of the data cleansing functionalities of

the ICARUS platform with the aim of addressing a variety of data quality issues and maximising the

usability of the data. The Cleanser is providing the assurance that the various datasets originating from

several heterogeneous data sources are clean, accurate and complete according to the standards set

by the data provider in order to increase their reusability in different contexts, as well as to enable the

execution of high-quality data analysis.

In general, data cleansing is an umbrella term for tasks that focus on the assurance of the data

integrity, data accuracy, data precision and data reliability. The list of tasks spans from simple

corrective operations such as transformation, reformatting and default value substitution to more

complex operations such outlier detection and replacement. The Cleanser provides all the required

processes that will enable the detection and the accomplishment of various corrective (or even

removal) actions on top of inaccurate or corrupted datasets that contain inaccurate, incomplete,

incorrect or irrelevant data fields or field values, also known as “dirty” data, towards safeguarding the

dataset reliability, reusability and accuracy. As such, the Cleanser is composed by four

subcomponents, namely the Data Validation, the Data Cleansing, the Data Completion and the

Cleansing Logger, in order to compile and execute the cleansing workflow on the selected datasets.

Each subcomponent is responsible for providing the suitable operations towards the completion of

the cleansing workflow.

The Data Validation subcomponent is safeguarding the cleanliness, correctness and usefulness of the

dataset by performing the appropriate validation checks against a list of predefined rules and

constraints in order to identify all the conformance errors. The Data Cleansing subcomponent is

performing the necessary corrective or removal actions based on the conformance errors that were

identified in the data validation step. The Data Completion subcomponent is safeguarding the

required data completeness of the dataset with a list of predefined rules for the required attributes

conformance and automatic filling of the missing values. The Cleansing Logger subcomponent is

maintaining and storing all the identified errors, the corrective or removal actions taken during the

execution of the cleansing workflow through an advanced logging mechanism. The stakeholder will

be able to review and trace the results and actions during each step of the workflow with the relevant

information.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

55 / 113

Figure 5-3: Cleanser overview

To meet its goal, the Cleanser is offering the intuitive user interface through which the stakeholder is

able to configure and customise the rules and corrective actions that are included in the cleansing

workflow, as well as generate and review a report with the execution results and the actions taken.

The main functionalities of the Cleanser are the following:

• Identify inaccurate, incomplete, incorrect or irrelevant data fields or field values on a selected

dataset based on the predefined validation rules.

• Perform the data cleansing operations that include a series of corrective or removal actions

for all identified conformance errors.

• Perform missing value handling with a variety of suitable techniques depending on the nature

of the mandatory field.

• Provide the logging mechanism that monitors and stores all the identified errors, the actions

performed and the corresponding results.

• Enable the rules configuration and the results visualisation through a user-friendly interface.

5.3.2.2 Addressed requirements

The Cleanser with the set of functionalities described in the component’s design addresses the

following requirements from the list of technical requirements that are documented in section 4.1:

• TR_014: Cleanser is offering the suitable processes for data validation, data cleansing and data

completion operation on top of a dataset towards the aim of addressing the data quality issues

and maximising the usefulness of the dataset.

5.3.3 Mapper

5.3.3.1 Design and Functionalities overview

The need for a common underlying data model emerged as a clear stakeholder requirement during

the user requirements elicitation steps documented in previous sections of the current deliverable.

Moreover, its necessity is discussed and explained in detail in D2.1 and D2.2, as it constitutes a

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

56 / 113

prerequisite for the effective data exploration, integration and analysis in the aviation domain. In brief,

the volume and heterogeneity of the data sources in the domain, not only in terms of pure content,

but often in terms of structure and formats, makes the existence of a common data model imperative

when data-enabled decision making over multiple datasets from diverse sources and stakeholders is

provisioned.

All datasets stored in the ICARUS platform, either available for sharing, or intended for exclusive usage

by their owner, should therefore conform to the common data model in a way that allows them to be

easily combined with other datasets, and further facilitates the application of the platform’s analysis

and visualisation services. The ICARUS Mapper, shown as part of the On Premise Environment in Figure

5-1, is the tool that undertakes the task of identifying and defining the way a dataset is mapped to the

common data model. In reality, the Mapper, as well as the other components of the On Premise

Environment, has a dual presence in the architecture:

a. A user interface that will be part of the web platform, i.e. the user will interact with the

graphical interface of the Mapper through the platform’s web interface. Through this

interface the user will be able to browse the entities and relationships of the ICARUS data

model, preview and edit the proposed mappings. This interaction will conclude in the

definition of the final mapping configuration, which will be executed by the backend data

mapping service.

b. A backend data mapping service that will execute the actual defined mapping from the user’s

data to the common data model. The service will receive a mapping configuration in the form

of a predefined template as a result of the interaction between the user and the Mapper’s

web interface. This template will hold the instructions of the mapping to be applied, which

the service is then responsible for applying on the user’s data.

Figure 5-4: Mapper basic workflow (as perceived by the user)

It should be stressed that an exhaustive list of fields and relationships describing thoroughly all data

that can emerge as potentially relevant to the aviation domain cannot be drafted. Consequently, the

data model cannot be expected to be a static reference structure, but a dynamically changing

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

57 / 113

representation of the evolving aviation data landscape. Therefore, the Mapper will address also this

need for updating the underlying data model in order to better suit the stakeholders’ needs.

It should be noted that an instance of the on-premise Mapper will also be available in the core

platform (as shown in Figure 5-1) in order to handle the schema mapping processes for the open data

that will be imported in the ICARUS platform. If this mapping is not performed, open data would be

essentially unusable by the various platform components, hence mapping is an essential preparatory

step for all data that will be stored inside ICARUS.

In summary, the main functionalities to be provided by the Mapper are as follows:

• Provide the user with the most up to date data model in a way that enables easy browsing

and discoverability of available entities and relationships described in the model

• Provide information on the data model’s entities and relationships to help the user

understand the model

• Generate proposed mapping from a new dataset to the ICARUS data model

• Allow the users (data owners that wish to provide data to the platform, i.e. data providers) to

review and update the proposed mapping from the fields of their dataset to the data model

fields

• Export a defined mapping in the form of an instructions template and send to the Mapper

sub-component that resides in the On Premise Environment (backend data mapping service)

• Perform the actual mapping from the user’s data to the common data model based on the

instructions provided by the mapping template

• Allow the user to store and reuse a defined mapping template

• Allow the user to provide suggestions for data model extensions

• Allow the platform administrator to review the user suggestions for updating the model and

approve or decline them

• Allow the platform administrator to extend or update the data model, e.g. with new fields

5.3.3.2 Addressed requirements

The Mapper addresses the following requirements from the list of technical requirements that are

documented in section 4.1:

• TR_017: The Mapper is the component that undertakes the task of ensuring that all data in

the ICARUS data platform conform in a known way to the underlying common data model and

therefore all platform components are aware of and can leverage this mapping when needed,

e.g. for data discoverability, data exploration, data integration, data analysis and data

visualisation purposes.

• TR_018: The Mapper is the component that ensures that external data being imported in

ICARUS are mapped to the ICARUS data model in a semi-automatic manner

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

58 / 113

• TR_020: In the context of mapping a data field to the ICARUS data model, if a predefined set

of values is linked to the corresponding field through a controlled vocabulary (e.g. airport

codes), then this information will be included in the mapping configuration.

• TR_026: The Mapper will provide an interactive UI to let the user browse the ICARUS data

model

• TR_027: The Mapper will allow the user to provide suggestions for extending/ updating the

data model

• TR_028: The Mapper will allow the platform administrator to review the data model

recommendations and approve or decline them

The Mapper also supports or partially addresses the following additional requirements:

• TR_012: The Mapper constitutes in a way the interface between the user and the data model

and therefore, through the model, offers support for all data types described in the data

requirements.

• TR_032: The Mapper will make the way the datasets in the platform are mapped to the

common data model available to the other platform components

• TR_045: Through the generation and execution of the mapping, the Mapper indirectly

facilitates the integration and combined analysis over multiple datasets (although the actual

tasks are undertaken by other components)

• TR_048: Through the generation and execution of the mapping, the Mapper indirectly

supports the combination (merging) of datasets based on common fields into one dataset

(although the actual task is undertaken by other components)

5.3.4 Wallet Manager

5.3.4.1 Design and Functionalities overview

The Wallet Manager is the component that handles all blockchain-related operations in the context

of the On Premise Environment. It is essentially a blockchain node that supports the following main

functionalities:

• It interacts with the blockchain to report on the validity of smart contracts

• It informs the Decryption Manager whether a request for data access should be granted or

denied based on the status of the corresponding smart contract.

5.3.4.2 Addressed requirements

The Wallet Manager, due to its nature (i.e. being a node in the blockchain) does not individually

address any of the defined technical requirements. However, it plays a part in addressing the following

requirements:

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

59 / 113

• TR_035, TR_040, TR_042, TR_043, TR_067, TR_068: These requirements are related to the

way ICARUS controls access to datasets through specific policies and smart contracts which

are stored in a DLT-based repository. Hence, the Wallet Manager partially supports all of

them.

5.3.5 Encryption Manager

5.3.5.1 Design and Functionalities overview

The Encryption Manager is the component responsible for providing the encryption mechanisms of

the data within the context of the ICARUS platform, as well as for the mechanisms that enable the

secure and controlled sharing of encrypted datasets between the data provider and the data

consumer.

The security and privacy of the datasets residing on a platform is critical point in the design of every

data-driven platform. On the one hand, datasets should be stored encrypted for security reasons so

that unauthorised access is prevented and privacy is safeguarded. Within this scope, the data provider

should be able to control and authorise the access to its proprietary datasets by the rest of the users.

On the other hand, the datasets should be unencrypted in order to be properly and efficiently

processed, especially in the case of data analysis execution.

In deliverable D2.1, the ICARUS Data Encryption method was presented. Within this method, the

decision that all datasets that shall become available in the ICARUS platform will be encrypted and

securely transmitted between the data provider’s premises, the ICARUS platform and the data

consumer, was elaborated. In accordance with this method, the Encryption Manager is providing the

required functionalities from the data provider’s side in the encryption-decryption workflow. Hence,

the purpose of the Encryption Manager is threefold: (a) to facilitate the dataset encryption process

with the help of a locally generated symmetric key, (b) to enable the encrypted dataset sharing process

with the generation and the secure sharing of the decryption keys in the form of key pairs with the

eligible (via an active data contract) data consumers, and (c) to manage and maintain the list of

generated decryption keys, as well as to handle the revocation process of any of these keys.

Within ICARUS, a column-based encryption will be followed as documented in D2.1. However certain

columns that contain spatiotemporal information will remain unencrypted in order to facilitate the

efficient data browsing and exploration that will be offered by components such as the Query Explorer

without though compromising the privacy or security of the datasets

The Encryption Manager has a dual presence in the ICARUS architecture (as shown in Figure 5-1). On

the one hand, an instance of the Encryption Manager is running on the On Premise environment in

order to provide the encryption processes for the datasets of the data providers. On the other hand,

an instance of the Encryption Manager is running on the Secure and Private Space in order to ensure

that the results of the executed analysis are also encrypted before they are securely transmitted and

stored in the Core ICARUS platform.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

60 / 113

Figure 5-5: Encryption Manager - encryption process

The main functionalities of the Encryption Manager are the following:

• Perform the on-demand column-based encryption of a dataset based on a locally generated

symmetric key.

• Enable the sharing of encrypted datasets between data providers and data consumers with

the generation of decryption keys in the form of key pairs, one per dataset per data consumer.

• Securely transmit the generated decryption key to the data consumer.

• Maintain a local key store where generated decryption keys and all relevant information is

stored.

• Handle revocation requests in which access to an encrypted dataset is revoked for a specific

data consumer.

5.3.5.2 Addressed requirements

The Encryption Manager with the set of functionalities described in the component’s design addresses

the following requirements from the list of technical requirements that are documented in section

4.1:

• TR_011: The Encryption Manager is the component that enables the end-to-end data

encryption, in collaboration with the Decryption Manager and Key Pair Administrator,

providing the mechanism to the data provider that is used for the encryption of the dataset,

while also supporting the execution of the decryption key exchange that enables the dataset

sharing.

• TR_013: As part of the encryption process, the Encryption Manager is facilitating the selection

of the field types that will be encrypted before the execution of the encryption process.

• TR_033: With regards to the spatiotemporal field types, the Encryption Manager is ensuring

that these fields are not encrypted in order to enable the query execution.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

61 / 113

5.3.6 Decryption Manager

5.3.6.1 Design and Functionalities overview

The Decryption Manager is the component responsible for providing the decryption mechanisms of

the encrypted data within the context of the ICARUS platform by acquiring the corresponding

decryption key from the data provider and performing the decryption of the encrypted dataset.

As already described in section 5.3.5.1, within ICARUS all datasets will be encrypted within the On

Premise Environment prior to being uploaded and stored in the ICARUS storage solution. Upon

exploring the various datasets stored in the ICARUS platform and receiving the access approval from

the data provider, the data consumer obtains access to the encrypted dataset. However, to be able to

decrypt the dataset without compromising the data privacy of the data provider, the ICARUS Data

Encryption method, as elaborated in D2.1, is followed, and a decryption key in the form of a key pair

is generated by the Encryption Manager running on the data provider’s side. Thus, the Decryption

Manager is providing the required functionalities from the data consumer’s side in the encryption-

decryption workflow as described in the ICARUS Data Encryption method.

The Decryption Manager is responsible for initiating the request for usage of a dataset to the Key Pair

Administrator which is responsible for establishing the secure communication between the data

consumer and the corresponding data provider for the requested dataset. The Decryption Manager is

also responsible to provide the means to verify its identity via the appropriate certificate or public key

towards the secure communication establishment. Finally, the Decryption Manager is providing the

proper decryption mechanism that upon receiving the decryption key will be capable of decrypting

the encrypted dataset.

Figure 5-6: Decryption Manager – decryption process

In summary, the main functionalities of the Decryption Manager are the following:

• Initiate the request for a dataset in the Key Pair Administrator that will trigger the generation

of the decryption key, in the form of key pair, from the data provider.

• Verify the data consumer’s identity in order to establish the secure connection with the data

provider so as to receive the decryption key that will be utilised in the dataset decryption

process.

• Implement the decryption mechanism that decrypts the dataset based on the received

decryption key.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

62 / 113

5.3.6.2 Addressed requirements

The Decryption Manager with the set of functionalities described above addresses the following

requirements from the list of technical requirements that are documented in section 4.1:

• TR_011: The Decryption Manager enables the end to end data encryption of the datasets,

along with the Encryption Manager and Key Pair Administrator, facilitating the decryption of

the datasets according to the decryption key exchange mechanism of ICARUS platform.

5.3.7 Key-Pair administrator

5.3.7.1 Design and Functionalities overview

The Key-Pair administrator is the component that is facilitating the exchange of the decryption keys

between the data consumer and the data provider in order to enable the end-to-end data encryption

and secure sharing of the encrypted datasets, following the approach of the ICARUS Data Encryption

method defined in D2.1. In this context, the Key-Pair administrator performs the signalling operations

between the data consumer and data provider to achieve the establishment of a secure connection

between these parties, by performing the identity verification of each party and the successful

handshake between them.

As described also in section 5.3.5.1, within the ICARUS platform the approach of decryption keys

exchange is followed. Within this approach, the datasets are encrypted by each data provider and

requests are issued by the data consumers to the data providers in order to access the encrypted

datasets that result in a decryption key (in the form of key pair) generation from the data provider for

each request. However, the approach requires the exchange of the corresponding decryption key

between the data consumer and the data provider so that the data provider can decrypt and utilise

the selected dataset. As such, the Key-Pair Administrator is responsible for supporting the decryption

key exchange. At first, the Key Pair Administrator is maintaining the list of the data providers and the

relevant datasets. When the data consumer initiates a request for accessing a specific dataset, the Key

Pair Administrator is responsible for establishing the secure connection between the data consumer

and the data provider in order to perform the decryption key exchange. The signalling operations

include the setup of secure transport encryption and two-sided authorisation, as well as the identity

verification. Furthermore, the Key Pair Administrator is supporting the revocation process of a

decryption key when access is revoked and the relevant decryption key is invalidated.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

63 / 113

Figure 5-7: Key Pair Administrator overview

The main functionalities of the Key-Pair administrator are the following:

• Perform the signalling operations in order to establish the secure connection for the exchange

of the decryption key between the data provider and the data consumer.

• Maintain the list of data providers that have provided encrypted datasets in order to support

the decryption key exchange requests issued by the data consumers.

• Provide and support the mechanism for the revocation of the decryption keys of any dataset

provided by the data consumers.

5.3.7.2 Addressed requirements

The Key Pair Administrator with the set of functionalities described in the component’s design

addresses the following requirements from the list of technical requirements that are documented in

section 4.1:

• TR_011: The Key Pair Administrator is the component that enables the end-to-end data

encryption and the realisation of the approach of decryption keys exchange, in collaboration

with the Encryption Manager and Decryption Manager, facilitating this exchange with the

establishment of a secure connection between the data consumer and the data provider.

Additionally, it safeguards the end-to-end data encryption mechanism with a revocation

mechanism when needed.

5.3.8 Data Handler

5.3.8.1 Design and Functionalities overview

The Data Handler component encapsulates various services responsible for tasks related to making

data available from and to the ICARUS platform, as well as among different platform components. It

serves as the “data gateway” in the ICARUS architecture, as it supports the complete workflow of

uploading proprietary and open datasets to the platform, downloading datasets from the platform to

the end user’s On Premise Environment and/or to a Secure and Private Space, and finally the uploading

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

64 / 113

of data generated in a Secure and Private Space back into the core platform’s storage. In order to

properly handle all the above, the Data Handler also needs to support the definition of appropriate

metadata for each dataset, which are essential for various ICARUS functionalities, indicatively

including searching for and acquiring datasets. Briefly, the Data Handler offers the following core

functionalities:

• It enables the uploading of datasets that have been exported by the On Premise Environment

worker (OnPremise Worker) in the ICARUS platform.

• It sends the uploaded data to the ICARUS Storage and Indexing component.

• It enables the import of open data that may come from various sources in the ICARUS

platform.

• It enables the download of datasets that are stored in the ICARUS platform.

• It communicates with the Master Controller when a dataset needs to be transferred in one of

the Secure and Private Spaces. The Data Handler does not perform the actual data transfer

but delivers the message and corresponding instructions to the Master Controller.

• It allows data coming from / generated in one of the ICARUS Secure and Private Spaces to be

stored in the platform’s storage. It should be noted that in order for the Data Handler to

perform all necessary operations for the data and their metadata to be appropriately stored

and handled, the data will also need to be mapped to the common data model.

5.3.8.2 Addressed requirements

The Data Handler addresses the following requirements from the list of technical requirements that

are documented in section 4.1:

• TR_001, TR_002, TR_004, TR_005, TR_006, TR_009, TR_010: These technical requirements

correspond to the core functionalities of the Data Handler, as described in the previous sub-

section. Especially regarding TR_006, it should be stressed that since some of the datasets

uploaded in the ICARUS platform are expected to be updated, the Data Handler shall ensure

that data updates are properly handled.
• TR_003: The envisioned simplified data check-in process will allow users to skip some of the

metadata definition steps, in the case that an uploaded dataset is meant to remain completely

private, i.e. neither processable nor accessible by anyone other than the owner (uploader).

Since the Data Handler is considered the interaction point for all data import and export

activities by the user, it can be considered that this requirement is also addressed by the

current component.

The Data Handler also supports or partially addresses the following additional requirements:

• TR_018: The Data Handler is not responsible for performing the mapping to the ICARUS data

model, but it will ensure that only data that have undergone this process are allowed to be

stored inside the core platform.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

65 / 113

• TR_019, TR_021, TR_025: The Data Handler, being the interaction point between the user and

the core platform for all functionalities related to data import, will also support the provision

of metadata (tags, license-related, provenance) for the datasets, in coordination with other

platform components.

5.3.9 Data License and Agreement Manager

5.3.9.1 Design and Functionalities overview

The Data License and Agreement Manager is the component responsible for handling all processes

related to the data licenses and IPR attributes, as well as the drafting, signing, and enforcing the smart

data contracts that correspond to data sharing agreements between platform users. The component

has three, seemingly distinct, but interconnected roles:

a. It offers a graphical interface that allows the users to define and review data licenses attached

to datasets uploaded to the ICARUS platform. The term license here is used in a broader sense,

as the component will handle all license-related metadata information that is provisioned, as

discussed and described in D2.2. The information defined here will be stored in the core

platform’s storage and will be made available to all other components that need to query it.

b. It offers a graphical interface that allows users to draft, review, negotiate on, and sign a smart

data contract that concretely defines the terms under which a dataset will be shared.

c. It interacts with the platform’s blockchain node to report on the validity of smart contracts.

Furthermore, it handles all processes required to prepare a smart contract for each (paid)

asset transaction and, finally, upload it to the blockchain. It will also enable the activation (i.e.

status change) of a smart contract when both parties - data owner (seller), data consumer

(buyer) - approve it and the payment is completed.

In brief, the core functionalities of this component are as follows:

• It allows the users to define IPR related attributes for the datasets they own in the platform

• It allows the users to define pricing terms and policies for the datasets they own in the

platform

• It provides predefined data license templates that the users can review and assign to the

datasets they own in the platform

• It enables the users to draft their own custom data licenses and assign them to the datasets

they own in the platform

• It enables the users to create, edit, review, update and sign data sharing agreements (to be

added in the blockchain)

• It enables the users to negotiate on (i.e. iteratively update and review) a data sharing

agreement prior to signing

• It enables the users to decline requests for providing access to their datasets, without

proceeding to a contract drafting process

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

66 / 113

• It prepares and uploads smart data contracts in the blockchain and updates their status as

needed

• It checks the status of a given smart data contract

• It allows active data contracts to be executed directly by the platform (and other participating

blockchain nodes). In such case, the platform and the OnPremise Workers will handle directly

requests for data access that correspond to valid contracts.

5.3.9.2 Addressed requirements

The Data License and Agreement Manager addresses the following requirements from the list of

technical requirements that are documented in section 4.1:

• TR_021, TR_022, TR_023, TR_024, TR_037: These requirements correspond to the definition

of license and pricing related metadata for the datasets uploaded in the platform and, as

described in the previous subsection, they are included in the core functionalities of the

component.

• TR_035, TR_036, TR_039, TR_040, TR_043: These requirements correspond to the smart data

contracts’ management and, as described in the previous subsection, they are included in the

core functionalities of the component.

• TR_041, TR_042: Through its user interface, the component facilitates the processes of

performing and managing requests for data access, although other components are also

involved in the corresponding workflows.

• TR_042: The ICARUS platform shall allow users to accept or deny requests for access on their

datasets made by other users

• TR_067, TR_068, TR_071: These requirements are not individually addressed by the Data

License and Agreement Manager, but as they are related to the controlled access over

datasets, the component can be considered as partially supporting them.

5.3.10 Policy Manager

5.3.10.1 Design and Functionalities overview

The Policy Manager is the component providing the authorisation engine that implements the access

control mechanisms within the ICARUS platform. The purpose of the Policy Manager is to provide the

logical access control that prevents the unauthorised access of any type of resource of the ICARUS

platform such as data, services, tools, any kind of system resources, as well as all other relevant

objects.

In general, access to resources refers to discovering, reading, creating, editing, deleting, reserving and

executing resources (NIST, 2014). In deliverable D2.1, the ICARUS Data Access Control method is

elaborated. This methods dictates the utilisation of Attribute-Based Access Control (ABAC) (NIST,

2014) authorization policies that are based on the XACML standard provided by the Organization for

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

67 / 113

the Advancement of Structured Information Standards (OASIS), in order to permit or deny access

requests to any type of resource of the ICARUS platform.

Hence, the Policy Manager is responsible for the implementation of the ICARUS authorisation engine

that will be based on the ABAC model and incorporates the required authorisation XACML-based

policies. The purpose of this authorisation engine is the provide the access control decision that will

either grant or deny the access to the requestor by enforcing the formulated authorisation policies.

Additionally, the Policy Manager will enable the definition, storage, reuse, update and disposal of the

authorisation policies in order to allow the data providers to effectively define and manage the

protection and sharing aspects of their datasets.

The main functionalities of the Policy Manager are as follows:

• Provide the access control mechanism that is based on the ABAC model and the XACML

reference implementation that will be used as the authorisation engine of the ICARUS

platform.

• Control and restrict the access of any type of resource of the ICARUS platform based on the

set of access control policies that are managed and maintained within the access control

mechanism.

• Provide the interfaces that will manage and process any access request in order to either grant

or deny access to the requestor

5.3.10.2 Addressed requirements

The Policy Manager addresses the following requirements from the list of technical requirements that

are documented in section 4.1:

• TR_041: The Policy Manager facilitates the access to datasets that are not owned by them

once the appropriate purchase is completed with a valid smart contract as enabled by Data

License and Agreement Manager.

• TR_042, TR_067: The Policy Manager is safeguarding that the access to datasets is granted

only to the users that the datasets owners have accepted their access requests and a valid

smart contract exists.

• TR_068, TR_070, TR_071, TR_072: The Policy Manager is providing the access control

mechanism that incorporates different authorisation levels with the use of policies for the

datasets and other resources of the platform.

5.3.11 ICARUS Storage and Indexing

5.3.11.1 Design and Functionalities overview

The ICARUS Storage and Indexing is the component that enables the storage and indexing capabilities

of the ICARUS platform. This component is responsible for the effective and efficient storage and

maintenance of large, complex and unrelated datasets within the ICARUS platform, as well as the

flexible and high-performance indexing of the stored datasets.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

68 / 113

In every Big Data platform, the data storage component holds a key role in the effective and successful

operation of the platform. The data storage component is responsible not only for storing and

managing the data of the platform but also for addressing the needs of the rest of the component for

data access that facilitates their successful operation. In order to support its key role, the ICARUS

Storage and Indexing component has to offer a set of core characteristics. The ICARUS Storage and

Indexing should ensure high availability of the stored data in order to support the various

functionalities of the platform that require instance access to the data, while also offering flexibility

and efficiency by supporting multiple concurrent requests. The ICARUS Storage and Indexing should

handle a variety of different data models originating from various heterogeneous data sources in large

volumes. In order to cope with the increasing volume of data, the ICARUS Storage and Indexing should

high scalability by utilising techniques that enable horizontal scalability based on distributed

architectures. Moreover, the ICARUS Storage and Indexing should offer high performance in storing

large volume of data in a timely and efficient manner, but also support high performance querying

over the stored data. Finally, one crucial characteristic is the availability of advanced security

mechanisms that offer methods for increasing the security, the privacy and the data protection of the

stored information.

In addition to the storage capabilities, the ICARUS Storage and Indexing component is offering the

effective and efficient indexing mechanism that facilitates the near real-time indexing and advanced

querying capabilities over the indexed data. The indexing mechanism will support multiple

functionalities such as advanced full-text search, geospatial search, terms boosting, spelling checking

and results highlighting. In order to achieve this, a well-defined indexing schema will be designed that

will be based on the ICARUS common aviation model. This schema will be enriched as the platform

evolves and new datasets from new data sources are incorporated in the platform. Since the ICARUS

platform will support column-based encryption, the indexing will be performed only in the

unencrypted columns of the datasets.

The main functionalities of the ICARUS Storage and Indexing are the following:

• Handle the storage of the incoming large datasets as provided by the Data Handler

component.

• Handle the multiple requests for data retrieval from the various components of the platform

in an efficient and effective manner.

• Support the storage of large encrypted datasets.

• Facilitate the query execution on top of the stored datasets.

• Support the indexing of the stored datasets to facilitate full-text search of the unencrypted

columns of the datasets

• Support efficient geospatial querying over the stored datasets.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

69 / 113

5.3.11.2 Addressed requirements

The ICARUS Storage and Indexing addresses the following requirements from the list of technical

requirements that are documented in section 4.1:

• TR_009: The ICARUS Storage and Indexing supports by design, as described also in the section

5.3.11.1, the effective storage of large files.

• TR_012: The ICARUS Storage and Indexing supports the storage all the data types that are

provided by the Data Handler.

• TR_068: The ICARUS Storage and Indexing supports the access control over the stored

datasets in collaboration with the Policy Manager.

• TR_069: The ICARUS Storage and Indexing ensures the security aspect of the data in storage

with the utilisation of a variety of data access control, data integrity and data consistency

mechanisms at the storage level.

5.3.12 Master Controller

5.3.12.1 Design and Functionalities overview

The Master Controller is the component responsible for compiling a set of instructions for the

execution of specific jobs or tasks, as provided by the components of the Core ICARUS platform, and

for providing this set of instructions for local execution to the workers running on the On Premise

Environment and the Secure and Private Space, namely the OnPremise Worker and the SecureSpace

Worker, and for monitoring the execution status of requested jobs or tasks.

Following the Master/ Worker paradigm, the Master Controller is located on the Core ICARUS platform

and is responsible for allocating the jobs/ tasks to be executed to the relevant workers which are

responsible for the execution and completion of these jobs/ tasks using the components running on

the environment in which they are deployed. More specifically, for the case of the OnPremise Worker

the Master Controller is compiling a set of instructions for the Cleanser, the Mapper, the Anonymiser,

the Wallet Manager and the Encryption Manager that should be executed on the dataset of the data

provider prior to being uploaded in the ICARUS platform. For the case of the SecureSpace Worker, the

Master Controller is compiling a set of instructions for the Decryption Manager, the Job Scheduler and

Execution Engine and the Encryption Manager. Additionally, the Master Controller is handling the

requests for transferring the selected encrypted datasets in the Secure and Private Space for the

analysis execution.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

70 / 113

Figure 5-8: Master Controller basic workflow

The main functionalities of the Master Controller are the following:

• Establish a connection with the OnPremise Worker running on the On Premise Environment

and the SecureSpace Worker running on the Secure and Private Space.

• Compile the set of instructions for the job execution that should be executed by the relevant

worker utilising the set of components on running on the environment that the worker is

deployed.

• Provide the set of instructions in the form of jobs/tasks to the workers and monitor the

execution status.

• Transfer the list of selected encrypted datasets to the Secure and Private Space.

5.3.12.2 Addressed requirements

The Master Controller cannot be directly mapped to the requirements documented in section 4.1,

however it implements one of the core functionalities in the design of the ICARUS architecture which

is the interconnection of the Core ICARUS platform with the On Premise Environment and the Secure

and Private Space for the execution of the data preparation of the private and confidential data prior

to be uploaded in the ICARUS Core platform and the execution of the data analysis in a secure

“sandboxed” environment.

5.3.13 OnPremise Worker and SecureSpace Worker

5.3.13.1 Design and Functionalities overview

Both the OnPremise Worker and SecureSpace Worker are the components responsible for the

execution of the jobs or tasks, as received by the Master Controller, utilising the available components

on their local running environment.

The OnPremise Worker is running on the On Premise Environment and is undertaking the jobs or tasks

that are related to the data preparation prior to being uploaded in the ICARUS platform. The worker

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

71 / 113

receives a set of instructions that involves the cleansing process executed by the Cleanser, the

mapping of the user’s data to the common data model, the anonymisation process executed by the

Anonymiser, the blockchain-related operations executed by the Wallet Manager and the encryption

process performed by the Encryption Manager. Additionally, the results of this data preparation are

provided, in the form of an encrypted dataset, to the Data Handler through the OnPremise Worker

for further processing and storage.

The SecureSpace Worker resides at the Secure and Private Space and is responsible for the job or task

execution that is related to the data analysis that is performed on the Secure and Private Space. The

worker is enabling the transfer of selected encrypted datasets that will be utilised in the data analysis

in the Secure and Private Space. Additionally, it receives a set of instructions that includes the

decryption process of the selected datasets as performed by the Decryption Manager, the analytics

job execution that is performed by the Jobs Scheduler and Execution Engine and the encryption of the

produced results of the analytics as executed by the Encryption Manager. Moreover, the SecureSpace

Worker is responsible for providing the encrypted results to the Data Handler for storage.

The main functionalities of the OnPremise Worker and the SecureSpace Worker are the following:

• Interpret and execute the instructions for the job or task execution as provided by the Master

Controller utilising the components running on their local environment

• Provide the execution status of the requested jobs/tasks to the Master Controller

• Support the uploading of the prepared encrypted datasets from the On Premise Environment

to the Data Handler

• Support the uploading of the encrypted analysis results from the Secure and Private Space to

the Data Handler

5.3.13.2 Addressed requirements

In general, both workers, the OnPremise Worker and the SecureSpace Worker, are facilitating the

execution of the jobs and tasks, as instructed by the Core ICARUS platform, in the On Premise

Environment and the Secure and Private Space. Although their functionalities cannot be directly

mapped to the requirements presented in section 4.1 besides the TR_004 requirement, they are

supporting in the background, as explained, the execution of multiple platform operations and are of

high importance for the overall platform successful operation. For the TR_004 requirement in

particular, the SecureSpace Worker is enabling the transferring and storage of the encrypted results

of the analysis in the Data Handler in order to be eventually stored in the ICARUS Storage.

5.3.14 Query Explorer

5.3.14.1 Design and Functionalities overview

The Query Explorer is the component that offers dataset exploration and discoverability

functionalities to the platform users. Query Explorer has two main offerings: (a) a graphical interface

for users to search for datasets and view the search results and (b) a service that translates each search

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

72 / 113

to a query that can be processed by the storage and indexing component. As such, the Query Explorer

constitutes the main facilitator of the ICARUS data marketplace functionalities and the main

interaction point from the user’s perspective. Specifically, it provides the following core

functionalities:

• It will allow users to define search criteria in order to discover potentially interesting datasets

in the platform. Specifically, it will enable the user:

o to select fields from data model that should be present in the datasets that will be

included in the results and

o to define and apply filters based on the metadata of the datasets that will be included

in the results

o to define filters on the actual data of the datasets that will be included in the results.

These filters will be only available for unencrypted data columns that belong to

specific data types (i.e. only for data columns that hold spatiotemporal information)

• It will translate the query configuration described above to a query language suitable for the

Storage and Indexing Component

• It will perform the generated query to the Storage and Indexing component and show the

returned results to the user

• It will store the query history of each user and allow the user to browse it and perform again

previous queries

• Apart from the actual query results, the Query Explorer will also show to the user some

dataset suggestions, which will be provided by the Recommender component

Figure 5-9: Query Explorer basic workflow (user's perspective)

5.3.14.2 Addressed requirements

The Query Explorer addresses the following requirements from the list of technical requirements that

are documented in section 4.1:

• TR_029, TR_030, TR_031: These technical requirements correspond to the core functionalities

of the Query Explorer, as described in the previous sub-section.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

73 / 113

• TR_032: The Query Explorer is the tool that leverages the identified connections among

datasets, i.e. their mapping to the common data model, in order to retrieve the datasets that

are of interest to the user according to the performed query, the configuration of which is

based on the fields of the common data model

• TR_016, TR_017: The Query Explorer will, by definition, conform with the common underlying

metadata schema and the common underlying data model in order to offer its functionalities

• TR_033: The second part of this requirement, i.e. the ability to search over unencrypted

spatiotemporal information of the available datasets, is one of the core functionalities of

Query Explorer, as described above.

• TR_034: The search results interface of Query Explorer constitutes an information catalogue

about all datasets that are open or available for sharing (by their respective data providers).

• TR_041: This requirement is only partially addressed by the Query Explorer, since through its

interface users will be able to review information regarding purchasing a dataset that is

included in the search results.

5.3.15 Recommender

5.3.15.1 Design and Functionalities overview

The Recommender is the component providing recommendations to the users with regards to the

datasets. In particular, this component is responsible to recommend and suggest to the users

additional related datasets during the search and query process. Furthermore, the Recommender will

provide recommendations based on the users' preferences and history of searches, requests and

purchases. The Recommender consists of an iterative procedure (collect information, make

recommendations) that aims to improve the quality and accuracy of the recommendations in each

iteration. The information collection phase collects relevant information of users to generate a user

profile or model for the prediction tasks. A recommendation system cannot function accurately until

the user profile/model has been well constructed. The system needs to know as much as possible from

the user in order to provide reasonable recommendation right from the onset. The success of any

recommendation system depends largely on its ability to represent user’s current interests.

Figure 5-10 shows the overview and the interactions of the Recommender with other ICARUS

components. First of all, the Recommender receives from the Query Explorer as input a user’s search

and then the Recommender is responsible for retrieving from the database any other useful

information (e.g. user preferences etc.) that can improve the recommendations. Afterwards, based

on the received input, the learning phase of the Recommender is activated in order to construct or

update the model. Finally, the new model generates the recommendations and the top N

recommended datasets are provided to the Query Explorer in order to display them to the end-user.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

74 / 113

Figure 5-10: Recommender overview

The main functionalities of the Recommender are the following:

• Access the database and retrieve metadata of the datasets, user’s behaviour (e.g. searches,

requests, preferences, purchases etc.).

• Generate personalised datasets recommendations by using a combination of collaborative

filtering and content-based filtering.

The Recommender is composed by two main sub-components, the Data Collector and

Recommendation Engine with the following main functionalities:

• The Data Collector is responsible for collecting relevant information about the data assets

(e.g. data asset category/topic) and the stakeholders (e.g. requests and purchases) in order to

provide the Recommendation Engine with the necessary information.

• The Recommendation Engine is responsible for providing justified and accurate

recommendations to assist the stakeholders and enhance data discoverability. The

Recommendation Engine will utilise the data that were collected from the Data Collector by

comparing the views and searching habits of similar users (i.e., collaborative filtering) as well

as by comparing data assets that share characteristics with datasets that a user has purchased

(content-based filtering).

5.3.15.2 Addressed requirements

The Recommender with the set of functionalities described in the component’s design addresses the

following requirements from the list of technical requirements that are documented in section 4.1:

• TR_031: The Recommender is enabling the enhancement of data exploration and

discoverability by providing personalised recommendations and suggestions for additional

related datasets that can be explored or utilised.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

75 / 113

5.3.16 Analytics and Visualisation Workbench

5.3.16.1 Design and Functionalities overview

The Analytics and Visualisation Workbench is facilitating the design, execution and monitoring of the

data analytics workflows within the ICARUS platform. Through its intuitive graphical interface, the

users are able to design the data analytics workflow that is tailored to their needs by selecting their

preferred analytics algorithm from the extended list of algorithms that are offered by the ICARUS

platform. Moreover, depending on the selected algorithm the users are able to set the corresponding

parameters in order to further personalise the algorithm execution according to their business needs.

Besides the algorithm selection, the users are able to select the list of desired datasets, from the list

of datasets that they are entitled to use, that will be used as the input data during the algorithm

execution. Additionally, the users will be able to store the designed workflow as an ICARUS application

within the BDA Application Catalogue, which constitutes the application repository of the ICARUS

platform, in order to restore, modify, re-execute it later or share it with the rest of the users of the

platform through a defined license. As such, the Analytics and Visualisation Workbench facilitates

both the creation of a new data analytics workflow with its novel graphical interface and the

management and re-execution of an existing data analytics workflow that has been previously stored

as an ICARUS application.

While the execution of the designed workflow is triggered within the Analytics and Visualisation

Workbench, the actual execution is performed within the Secure and Private Space. More specifically,

the execution process is secured into a sandboxed runtime environment within the Secure and Private

Space, as provisioned by the Resource Orchestrator. The Analytics and Visualisation Workbench will

act as a client sending all the requests for workflow execution to the Jobs Scheduler and Execution

Engine through the Master Controller and the SecureSpace Worker. Furthermore, the Analytics and

Visualisation Workbench covers the logging and monitoring aspects based on the metrics gathered

during the execution of the designed workflows, while also offering the scheduling capabilities for the

execution of the designed workflow in a selected date and time.

The Analytics and Visualisation Workbench allows the user to extract meaningful information through

a modern data visualisation suite of charts and visualisations devised considering the most powerful

data visualisation patterns available in literature and the most dominant data frameworks adopted

for Big Data Analytics. Some of the visualisations are especially recommended for the overviews, some

others for interactive data exploration and more than one visualisations can be combined in order to

form a dynamic dashboard suitable to address the users’ needs.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

76 / 113

Figure 5-11: Analytics and Visualisation Workbench basic workflow

In summary, the main functionalities to be provided by the Analytics and Visualisation Workbench

are as follows:

• Provide an intuitive graphical interface where the users are facilitated to design the data

analytics workflow tailored to their needs, composed by an analytics algorithm and its

parameters, a set of selected datasets and a set of desired visualisations.

• Provide the ability to store, modify, reuse and share the designed workflows in the form of

ICARUS applications that are registered within the BDA Application Catalogue.

• Initiate and monitor the workflow execution of the designed analytics workflow into the

Secure and Private Space

• Offer scheduling capabilities for the execution of the designed analytics workflow in a selected

date and time.

• Provide a modern data visualisation suite of charts and visualisations that span from basic

charts to advanced multilevel visualisations.

• Enable the creation of dynamic dashboards composed by multiple selected visualisations.

5.3.16.2 Addressed requirements

The Analytics and Visualisation Workbench will match the following needs according to the list of

technical requirements documented in section 4.1:

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

77 / 113

• TR_044: The Analytics and Visualisation Workbench enables the creation, storage,

management and launch of data analytics workflows through its novel graphical interface.

• TR_045, TR_059: The Analytics and Visualisation Workbench facilitates the integration or

aggregation of multiple datasets towards the effective and efficient data analysis execution.

• TR_046, TR_047: The Analytics and Visualisation Workbench enables the design and execution

of advanced and complex data analytics workflows in which an extensive list of data analysis

algorithms is supported.

• TR_048: The Analytics and Visualisation Workbench provides the means of combining multiple

different datasets originating from different data sources in order to execute a data analytics

workflow.

• TR_049: The Analytics and Visualisation Workbench provides a user-friendly monitoring

dashboard that displays the status of active, completed and failed jobs.

• TR_050, TR_051, TR_052, TR_053, TR_054, TR_055: The Analytics and Visualisation

Workbench supports an extensive list of data analysis algorithms, which span from simple

statistical analysis algorithms to more complex and advanced analysis algorithms such as

machine learning and deep learning algorithms.

• TR_056: The Analytics and Visualisation Workbench offers a modern data visualisation suite

of charts and visualisations, containing multiple visualisation formats which span from simple

static charts to more advanced visualisation formats such as interactive charts with multiple

layers of information.

• TR_057, TR_058: The Analytics and Visualisation Workbench is offering the scheduling

mechanism in order to define and schedule the execution of a designed data analysis

workflow in a selected date and time.

• TR_060: The Analytics and Visualisation Workbench is enabling the data analytics execution

in a scalable and reliable manner with help of the Job Scheduler and Execution Engine

component.

5.3.17 BDA Application Catalogue

5.3.17.1 Design and Functionalities overview

The BDA Application Catalogue is implementing the repository of the ICARUS applications in which the

designed data analytics workflows, as created by the users of the platform, can be stored, retrieved,

modified and loaded in the Analytics and Visualisation Workbench. More specifically, an ICARUS

application is a set of selected datasets, data analysis algorithms and their corresponding parameters,

as well as a set of selected visualisations.

The BDA Application Catalogue is making use of an internal configuration model that collects all the

required metadata for the selected datasets, the selected data analytics algorithms and the selected

visualisation types and their parameters. These metadata are stored in a dedicated database and can

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

78 / 113

be used within the Analytics and Visualisation Workbench environment in order to perform the

execution of the designed data analytics workflow. Additionally, the BDA Application Catalogue is

enabling the sharing of the stored ICARUS applications between the users of the platform through a

sharing license that is defined for this specific ICARUS application. The ICARUS application can be

defined as a private application, that only the user (owner) of the application will have access to this

application, or as a public application that the rest of users of the platform can used under the license

condition defined by the owner of the application.

As such, the purpose of the BDA Application Catalogue is twofold: a) to enable the storage and reuse

of the designed data analytics workflows from the users, and b) to facilitate the sharing of the designed

data analytics workflows among the users of the platform under a sharing license.

In summary, the main functionalities of the BDA Application Catalogue are as follows:

• Provide a repository where the user-defined data analytics workflows can be stored in the

form of ICARUS applications.

• Enable the storage, modification and reuse of the ICARUS applications within the Analytics

and Visualisation Workbench environment.

• Facilitate the sharing of the stored ICARUS applications between the users of the platform

under a sharing license as defined by the owner of each application.

5.3.17.2 Addressed requirements

• TR_044, TR_047, TR_058: The BDA Application Catalogue enables the storage, reuse and sharing

of the design data analytics workflows in the form of ICARUS applications providing the

repository for these applications.

5.3.18 Resource Orchestrator

5.3.18.1 Design and Functionalities overview

The Resource Orchestrator is the component providing the realisation of the Secure and Private Space

that will be provided to the platform users in order to perform the data analysis. More specifically,

Resource Orchestrator undertakes the responsibility of the provision and management of an isolated

and secure environment for each user of the platform in which the various analytical and visualisation

features of the platform will be executed.

The Resource Orchestrator supports the dynamic deployment and management of a “sandboxed”

environment by utilising a set of techniques and technologies that enable easy, fast and secure

deployment over virtualised infrastructure. Within the Secure and Private Space, the main

components that will be deployed are the SecureSpace Worker which is ensuring the task execution

as received by the Master Controller, as well as the encrypted datasets transfer, the Job Scheduler

and Execution Engine, which is enabling the analytics aspects of the ICARUS platform, and the

Execution Cluster that is providing the processing execution engine with distributed job execution.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

79 / 113

Additionally, the Encryption and Decryption Manager, that are utilised within encryption and

decryption process of the datasets of the ICARUS platform, will be also deployed.

In computing, infrastructure refers to resources which can be virtual or physical and include

computing, storage and network resources. Virtualised infrastructure is a software-based

infrastructure which allows the creation of multiple simulated environments or dedicated resources

from a single, physical hardware system through a software called hypervisor which connects directly

to that hardware and allows the split of one system into separate, distinct and secure environments

called virtual machines (VMs) (RedHat, 2017). The focus of the Resource Orchestrator is towards the

deployment of scalable virtual machines in a virtualised infrastructure.

Within the context of ICARUS, the concept of containerised execution environments will be embraced

for the Secure and Private Space that besides the portability and interoperability features, it also

enables deployment over virtualised infrastructure and orchestration support. Furthermore, this

concept facilitates the monitoring, autoscaling and management of the deployed applications.

Figure 5-12: Container virtualisation

While multiple container technologies exist nowadays, Docker1 is the one with the widest adoption by

both the research and vendor communities. Docker is built on top of Linux kernel, namespaces,

cgroups, chroot and file systems constructs. The idea behind Docker is that all containers on a given

host utilise the same kernel, however the application resources are isolated per container. Docker

containers are lightweight, standalone, self-contained systems that include everything that is needed

for the proper execution of the system on a shared operating system such as code, runtime, system

tools, system libraries and settings. Docker provides also an extensive toolset in order to manage the

1 https://www.docker.com/

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

80 / 113

lifecycle of the containers with tools such as the Docker Engine, the Docker Swarm and the Docker

Compose that will be explored within the context of the Resource Orchestrator.

The main functionalities of the Resource Orchestrator are the following:

• Connect to the configured virtualised infrastructure (e.g. OpenStack) and perform continuous

monitoring and management of the resources.

• Access the available VM instance types and instances and be able add new VM instance types.

• Provide the means to allocate and release the needed resources in VMs, as well as to boot

and stop virtual VM instances.

• Deploy and manage the containerised applications or services on the spawned VMs on the

virtualised infrastructure in all their lifecycle.

• Provide tools such as service discovery for the services running on the VMs and health check

operations in order to determine service availability.

• Be able to execute remote commands on the spawned VMs and handle the interactions

between the various applications and services on a spawned VM.

The Resource Orchestrator is composed by two main sub-components, the Resource Supervisor and

Cloud Orchestrator with the following main functionalities:

• The Resource Supervisor is undertaking the role of connecting to virtual infrastructures, on-

boarding the available resources, performing continuous monitoring and management of the

resources and supporting of the Cloud Orchestrator towards the deployment and

management of the deployed applications or services contained within the virtual machines.

• The Cloud Orchestrator is responsible for the creation of the required deployment artefacts

for the deployment of the applications or services, as well as the orchestration of the

deployment and management of them in the virtualised infrastructure utilising the Resource

Supervisor and a set of supplementary monitoring and reporting applications running locally

on the virtual machines called Agents.

Figure 5-13: Resource Orchestrator overview

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

81 / 113

The Resource Supervisor is responsible for providing the appropriate infrastructural resources to the

Cloud Orchestrator. As such, the Resource Supervisor is managing and monitoring the infrastructural

resources that the are available for usage by connecting to virtual infrastructures and retrieving the

relevant information. Resource Supervisor offers a variety of operations including, but not limited to,

resource allocation and de-allocation, access to the available VM instance types and instances,

creation of new VM instance types, booting and stopping of VM instances.

The Cloud Orchestrator is responsible for the deployment of the containerised applications or services

on a virtualised infrastructure. More specifically, the Cloud Orchestrator utilises the Resource

Supervisor in order to perform the deployment and management of the lifecycle of the containerised

applications or services on spawned VMs on the virtualised infrastructure. As such, the Cloud

Orchestrator provide the containers to the target VMs and is able to orchestrate the process of

deploying, starting, stopping and deleting a containerised application or service, in addition to being

able to always monitor and be aware of its status.

5.3.18.2 Addressed requirements

The Resource Orchestrator with the set of functionalities described in the component’s design

addresses the following requirements from the list of technical requirements that are documented in

section 4.1:

• TR_061: The Resource Orchestrator is facilitating the effective execution of data analysis

offering the tools and services with dynamic resource allocation, monitoring and

management.

• TR_066: The Resource Orchestrator is enabling the deployment of a Secure and Private Space

in the form of dedicated spawned VMs for the user that are utilised in the execution of data

analysis.

5.3.19 Jobs Scheduler and Execution Engine

5.3.19.1 Design and Functionalities overview

The Jobs Scheduler and Execution Engine is the component in charge of initiating, executing the

analytics jobs as provided by the Analytics and Visualisation Workbench, as well as of managing the

resources available to the Execution Cluster nodes in the context of a Secure and Private Space. The

analytics jobs are allocated to the Execution Cluster nodes, decoupling the invocation of a data analysis

workflow coming from the Analytics and Visualisation Workbench from its execution.

Under the hood, the Jobs Scheduler and Execution Engine acts as a cluster manager and it takes in

consideration resources such as memory, computation and network bandwidth to guarantee best

performances. The Jobs Scheduler and Execution Engine deploys, scales and manages the nodes

involved in analytics jobs execution and interacts with a set of local workers running on the Execution

Cluster nodes for distributed computation which may involve the adoption of multifarious open

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

82 / 113

source cutting-edge trending technologies. The Jobs Scheduler and Execution Engine is also

responsible for monitoring the execution of the job and for reporting the execution status to the

Analytics and Visualisation Workbench. The results of the job execution are provided to the Encryption

Manager in order to be encrypted. The encrypted results are then provided to the Core ICARUS

platform for storage and retrieved by the Analytics and Visualisation Workbench in order to be

decrypted and displayed to the user in the form of various visualisation types.

The Execution Cluster, that is managed by the Jobs Scheduler and Execution Engine, is the cluster-

computing framework of the ICARUS platform and is deployed within the Secure and Private Space.

The Execution Cluster offers the powerful processing engine that enables the data analysis execution

across multiple datasets and support the extended list of data analysis algorithms that span from

simple statistical analysis to more advance and complex machine learning and deep learning

algorithms. The cluster-computing framework is offering a set of key characteristics that are crucial

for the successful operation of the ICARUS platform such as speed, efficiency, reliability, fault

tolerance and effective distributed job execution.

Both the Jobs Scheduler and Execution Engine and the Execution Cluster are running on the sandboxed

environment provided by the Secure and Private Space.

In brief, the core functionalities of the Jobs Scheduler and Execution Engine are as follows:

• Perform the analytics jobs execution as instructed by the Analytics and Visualisation

Workbench

• Perform the cluster management of the Execution Cluster, which is the cluster-computing

framework of the ICARUS platform, in order to perform effective and efficient data analytics

job execution with support for distributed computation across the nodes of the Execution

Cluster.

• Monitor and the report the status of the job execution to the Analytics and Visualisation

Workbench.

• Provide the results in the Encryption Manager for encryption before they are transferred to

the Core ICARUS platform for storage.

5.3.19.2 Addressed requirements

• TR_045, TR_059: The Jobs Scheduler and Execution Engine enables the integration or

aggregation of multiple datasets towards the effective and efficient data analysis execution.

• TR_048: The Jobs Scheduler and Execution Engine enables the combination multiple datasets

originating from different data sources in the execution of a data analytics job.

• TR_049: The Jobs Scheduler and Execution Engine provides the monitoring mechanism for

providing the progress and execution status to the Analytics and Visualisation Workbench for

display.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

83 / 113

• TR_050, TR_051, TR_052, TR_053, TR_054, TR_055: The Jobs Scheduler and Execution Engine

supports the execution of an extensive list of data analysis algorithms, which span from simple

statistical analysis algorithms to more complex and advanced analysis algorithms such as

machine learning and deep learning algorithms, through the Execution Cluster.

• TR_057, TR_058: The Jobs Scheduler and Execution Engine is supporting the analytics job

execution in scheduler manner, as provided by the Analytics and Visualisation Workbench, by

offering the scheduling mechanism that initiates the analytics job execution in a selected date

and time.

• TR_060: The Job Scheduler and Execution Engine is enabling the analytics job execution in a

scalable and reliable manner utilising the capabilities of the Execution Cluster.

5.3.20 Notification Manager

5.3.20.1 Design and Functionalities overview

The Notification Manager is the component providing the updated information to the users with

regards to the datasets or the scheduled analytics jobs. More precisely, this component is responsible

to notify the users of the ICARUS platform of events that have happened. These events refer to the

addition of new data assets related to the users’ preferences, updates on existing data assets in which

the users have active contracts and changes on the users’ execution status of analytics jobs.

Based on the users’ configured preferences, Notification Manager will notify users for the addition of

new data assets that are relevant to them. Furthermore, notifications will be sent for any updates on

the data assets which the users are entitled to use. These updates can be either updates on the terms

of use of the data assets or modifications in the data. Moreover, the users will be notified for any

updates on the execution status of their scheduled analytics jobs such as task completion, resource

exhaustion errors and failures.

The Notification Manager by default, will show only relevant notifications and not unnecessary ones.

However, the users are able to configure their notification settings and hide specific notifications or

even prioritise notifications about specific topics. In this way, they can keep their notification tab in a

cleaner and tidy status.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

84 / 113

Figure 5-14: Notification Manager overview

The main functionalities of the Notification Manager are the following:

• When a new data asset is registered in the platform, access the information about the users’

preferences and notify the users that are interested in topics related to the new data asset.

• When an existing data asset is updated in the platform, access the information about the data

assets of the users (either owned or purchased) and notify the users that are entitled to use

it.

• Connect to the Job Scheduler and Execution Engine and notify the users about the execution

status of their scheduled analytics job.

• Store the notifications of each user in order to allow the users to access them anytime.

Blocked notifications are hidden together in one place for later check.

5.3.20.2 Addressed requirements

The Notification Manager, as described in the component’s design, addresses the following technical

requirements which are listed in section 4.1:

• TR_062: The Notification Manager allows users to configure their notification settings, hide

specific notifications and prioritise notifications about specific topics.

• TR_063: The Notification Manager notifies users with active contracts on a data asset when

either its terms of use are updated or its data are modified.

• TR_064: The Notification Manager notifies the users when their scheduled analytics jobs are

completed either with success or failure.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

85 / 113

5.3.21 Usage Analytics

5.3.21.1 Design and Functionalities overview

The Usage Analytics is the component responsible for the detailed analysis of users’ interactions

within the ICARUS platform. This component provides the tools for collecting, analysing and visualising

the usage of the various services and data assets of the platform in order to extract useful insights and

statistics.

Usage Analytics retrieves statistic information from the platform about the user’s behaviour in various

levels such as the usage and adoption of specific features or services and the usage of each dataset or

algorithm. By analysing this information for every user, it provides aggregated statistics to both the

users and the platform administrator, enabling them to better understand users’ behaviour at various

levels, such as which features are adopted and which are ignored.

For instance, indicative metrics for the data assets can refer to the number of views, number of

purchases, number of appearances in search results, number of analytical tasks that were applied on

it (if available) and so on. As for the services (algorithms, visualisation types, etc.), indicative metrics

can be related to the number of times the service was used, number of users that utilised the service,

last time the service was used, etc. Furthermore, platform specific metrics are also considered, like

the number of active/total users, number of active/total sessions, number of new users per month,

etc.

Figure 5-15: Usage Analytics overview

The main functionalities of the Usage Analytics are the following:

• Access and retrieve the information for each user about each data asset purchased or used in

analytics jobs, algorithm applied for any task, visualisation scheme for showing original or

modified data.

• Analyse the retrieved information and produce aggregated statistics about each data and

service asset, without revealing any information of the individual users.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

86 / 113

• Visualise the aggregated statistics in an intuitive dashboard for both users and the platform

administrator.

5.3.21.2 Addressed requirements

The Usage Analytics, as described in the component’s design, address the following technical

requirements which are listed in section 4.1:

• TR_065: The Usage Analytics component provides aggregated statistics about the usage of the

assets (either data or service assets), as well as platform specific metrics

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

87 / 113

6 Conclusions & Next Steps

The purpose of the deliverable at hand (D3.1 “ICARUS Architecture, APIs Specifications and Technical

and User Requirements ”) was to deliver the user requirements and the technical requirements of

ICARUS, as well as to deliver the first version of the conceptual architecture of the ICARUS platform.

At first, the ICARUS agile development methodology was presented, describing all the processes,

instruments, roles and methods that are adopted in all the phases of the development of the ICARUS

platform. Within this methodology, the User Stories definition was clearly defined providing all the

guidelines and the additional management information that were used as a guidance during the

process. Moreover, the requirements definition in terms of key characteristics and requirements

classification was presented, along with the ICARUS stakeholders and their interactions with the

ICARUS platform.

In accordance with this methodological approach, the User Stories, that that are stemming directly

from the demonstrator partners of the ICARUS project were collected in collaboration with technical

partners. These User Stories presented the expected behaviour of all sub-systems of the platform from

the end-user perspective and were provided as input for the user requirements elicitation process.

From these User Stories, the user requirements were extracted ensuring the compliance with the

requirements characteristics defined in the methodology, while also taking into consideration the

MVP features, as defined in D1.2. These extracted user requirements were classified into platform and

demonstrator functional requirements and non-functional requirements.

The list of functional and non-functional user requirements was analysed thoroughly in order to

extract the list of the ICARUS technical requirements. The list includes also a set of additional technical

requirements that derived directly from the feedback received from the external ICARUS MVP

validation. Hence, the elicited technical requirements consolidate the ICARUS MVP, as they span the

phases of the ICARUS methodology and the MVP features, as defined in D1.2, and the requirements

from the ICARUS consortium and from the external stakeholders and the theoretical approaches

defined in WP2. These concrete and solid technical requirements were provided as input in the design

and specification definition of the components of the ICARUS architecture. Within the scope of this

deliverable the complete requirement backlog has been provided for ICARUS.

A comprehensive analysis of these technical requirements provided the design of the first version of

the conceptual architecture of the integrated ICARUS platform. The analysis of the technical

requirements that derived from the external ICARUS MVP validation introduced several architectural

decisions and multiple iterations in the design process in order to ensure that the security-related

requirements of the external aviation stakeholders are properly addressed. The ICARUS architecture

is a modular architecture, composed by a set of key components with distinct roles and scope towards

the aim of providing the envisioned platform features that will address the ICARUS stakeholders’

needs. Each component was carefully designed having in mind that it should address a specific set of

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

88 / 113

technical requirements from the list of the ICARUS technical requirements. For each component a

comprehensive description of the design and functionalities has been documented.

It should be stressed at this point that the current deliverable presents the first version of the ICARUS

conceptual architecture, as well as the user and technical requirements. These outcomes will drive

the implementation phase of the ICARUS platform that will be performed within the context of WP4.

However, as the design of the ICARUS architecture and the identification and analysis of the functional

and non-functional requirements, as well as their translation into technical requirements, is a living

process that will last until M32, the forthcoming versions of this deliverable will include updates on

both the architecture and the components of the architecture based on the feedback received.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

89 / 113

Annex I: References

Cohn, M. (2010). Agile Softwareentwicklung: mit Scrum zum Erfolg!. Pearson Deutschland GmbH.

Ericson, C. A. (2015). Hazard analysis techniques for system safety. John Wiley & Sons.

 “NIST Guide to ABAC Definitions”. [Online] Available:

http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf [Accessed: 05-01-2019]

“Non Functional Requirements” [Online] Available:

https://www.scaledagileframework.com/nonfunctional-requirements/ [Accessed: 22-03-2019]

“Understanding virtualisation” [Online] Available: https://www.redhat.com/en/topics/virtualization

[Accessed: 10-12-2018]

“XACML Oasis Specification”. [Online] Available: https://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=xacml [Accessed: 15-11-2018]

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

90 / 113

Annex II: ICARUS User Stories

ID Category
User Story Priority Value Acceptance

As a <type> I want to <user
requirement>

So that <reason>

PACE_001 Collection Data
consumer

retrieve periodically
the updates

automatically from
data providers

it is ensured that data
are always up-to-date

Medium Medium ICARUS provides any available
updates on a dataset from a data

provider automatically by performing
periodic checks

PACE_002 Collection Data
consumer

have shortcuts to my
most frequent
activities and

workflows

I am more efficient. Medium Medium ICARUS platform provides shortcuts
with the most used workflows or user

activities

PACE_003 Collection Data
consumer

Have data
categorised into

different
authorisation level

I can decide upon the
private and public

visibility of my data.

Medium Medium ICARUS should provide the means to
set different authorisation level to the

different datasets

PACE_004 Analytics Data
consumer

to be able to use the
ICARUS platform at

any time

that I can execute or
perform my

workflows with the
acceptable level of

performance

Medium Medium ICARUS Platform should be
operational at any time with the
acceptable level of performance.

PACE_005 Exploration Data
consumer

Query for data by
certain

characteristics

I can collect data for
my route network

analysis.

Medium Medium Users should be able to search and
find data based on selected

characteristics such as type, key
words, time frame.

PACE_006 Exploration Data
consumer

query for data only
under my

authorisation level

I can be sure to use
data that I am

entitled to use only

Medium Medium User shall be able to query only the
data they have access to

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

91 / 113

PACE_007 Analytics Data
Analytics

Conduct business
data analytics

I can enrich my data
with more advanced

information.

Medium Medium Users should be able to choose data,
conduct analytics and store the

results of the analysis
PACE_008 Exploration Data

consumer
Query airport data
by name, city and
IATA/ICAO code

I can collect airport
data for my route
network analysis.

Medium Medium Users should be able to search and
find data e. g. for airports.

PACE_009 Exploration Data
consumer

Query flight
information data by

airline, date and
flight number.

I can collect flight
information for my

route network
analysis.

Medium Medium Users should be able to search and
find historical and scheduled flights.

PACE_010 Exploration Data
consumer

Query airport
weather data for

distinct time frames

I can collect historical
weather data for a
statistical analysis.

Medium Medium Users should be able to search and
find historical airport weather.

PACE_011 Collection Data
consumer

be able to download
the data in machine

readable formats

I can
import the data in

other systems.

Medium Medium User should be able to download data
or the results of the query executed.

PACE_012 Recommendation Data
consumer

receive suggestions
for related data

I can access
additional data to my

query

Medium Medium User should be informed for relative
data along with the query results. .

PACE_013 Exploration Data
consumer

for a particular
airport to get

related runway and
obstacle data

I can collect
additional data for
my route network

analysis.

Medium Medium ICARUS should be able to provide
runway and obstacle data for a

specified airport.

PACE_014 Collection Data
provider

upload structured
data to the ICARUS

platform

I can make my data
available to other

ICARUS users.

Medium Medium Users should be able to upload and
share data with other users.

PACE_015 Linking Data
provider

enrich my uploaded
data with additional

information

I can link my data
with other relative

data

Medium Medium ICARUS should be able to enrich my
data and link my data with other

relative data .
PACE_016 Harmonisation Data

provider
easily modify, delete
and replace my data
assets on the ICARUS

platform

I can maintain my
data provision.

Medium Medium Update, delete and change existing
data.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

92 / 113

PACE_017 Sharing Data
provider

Be able to manage
the confidentiality

for my data

I that no one is
violating my data IPs.

Medium Medium Users should be able to set and
modify the sharing policy of my data.

PACE_018 Collection Data
provider

Have data curations
mechanisms

provided by the
ICARUS platform

I can improve the
quality of my data.

Medium Medium ICARUS should provide the
mechanisms to upload and improve

the quality of my data.

PACE_019 Collection Data
provider

Be able to perform
various

anonymisation
techniques

I can apply them on
my uploaded data in
order to comply with
privacy and licensing
requirements of my

region.

Medium Medium During upload ICARUS enables the
execution of several anonymisation
techniques in order to address the

privacy and licensing requirements of
my region.

PACE_020 Collection Data
provider

have anonymisation
mechanisms

provided by the
ICARUS platform

I can ensure the
privacy of my data.

Medium Medium ICARUS should provide the means for
ensuring data privacy

PACE_021 Collection Data
provider

upload airport data
from individual

sources to ICARUS
platform

other users can
search and find data
by certain criteria.

Medium Medium Data should be loaded correctly to
the ICARUS platform.

PACE_022 Linking Data
provider

Be able to establish
connections

between flight
information and with

airport data assets

another user can get
linked data

suggestions.

Medium Medium Data from various sources should be
linkable.

PACE_023 Analytics service asset
consumer

Be able to work in a
secured space

I can use ICARUS
service assets also for
my confidential data

High High A user should be able to analyse its
confidential data in secure space

AIA_001 Linking Data
provider

Connect flight
information data
with airport data

I can get linked data
suggestions.

Medium Medium Data from various sources should be
linkable.

AIA_002 Analytics Data
consumer

Login to a secure
space

I can analyse my
confidential data

High High A user should be able to analyse its
confidential data in secure space

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

93 / 113

AIA_003 Analytics Data
consumer

Integrate with an
easy way the ICARUS

platform flight
information related
data with the AIA

airport data

I can use them as the
base data for future

planning.

High High A user should be able to analyse the
ICARUS platform flight information

related data with the AIA airport data
in order to receive forecasts

AIA_004 Analytics Data
consumer

Integrate with an
easy way the ICARUS

platform flight
information related
data with the AIA

airport data

have the ability to
run different

scenarios on how the
airport may operate

using different
schedules

High High A user should be able to analyse its
data to run analysis and future

simulations.

AIA_005 Analytics Data
consumer

Integrate with an
easy way the ICARUS

platform flight
information related
data with the AIA

airport data

check any potential
airport capacity

constraints against
pre-defined KPIs

High High A user shall be able to process
automatically the results of the
analysis against predefined KPIs

AIA_006 Analytics Data
consumer

Have graphical and
tabular form report

 I can gain future
traffic information

taking into
consideration all

flight time related
attributes in a visual
and graphical format

Medium High A user should be able to create and
use visualisations (dashboards ,

graphs etc) to assess results picking
the interval and timeframe for the

statistical analysis.

AIA_007

Notification Data
consumer

Be notified when
relevant data

become available

I can examine it
without missing

potentially important
opportunities

Low Medium
When new datasets are available the
system notifies potentially interested

consumers

AIA_008 Recommendation Service asset
consumer

Proposition of
additional data

assets (either own or
from different data

providers)

I can perform analysis
and define trends

Low Medium Proposal of additional data sources
when building reports or analytics

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

94 / 113

AIA_009 Sharing Data
provider

 Functionality to set
a license of a data

asset

I can set the terms of
use for each data

asset

High High A user should be able to build a data
sharing license.

AIA_010 Sharing Data
provider

Step-by-step
guidance on how to

define the
appropriate license

of a data asset

One can easily define
and enforce the

terms of use for each
data asset

High High A user should be guided when
building of a data sharing license.

AIA_011 Sharing Data
provider

Ability to activate
and cancel a data

sharing agreement

I can easily activate
and deactivate a data

sharing agreement

High High A user should be able to activate and
deactivate a data sharing agreement

AIA_012 Analytics Data

consumer
Ability to run

Simulation scenarios
Run a forecast

schedule within the
current operational
resources as a test

scenario

Medium High A user should be able to demonstrate
or identify the areas where capacity

will be constrained.

AIA_013 Analytics Data
consumer

Ability to create and
run what-if scenarios

For the purpose of
master-planning

exercises.

Medium High A user should be able to run these
scenarios based on virtual flights

schedules and/or a set of business
and resources’ rules.

AIA_014 Sharing Data
provider

the ICARUS to offer
logging and auditing
mechanisms

In order the
stakeholders to be
able to resolve any

disputes

High High A user should be able to audit logging
and resolve any disputes

AIA_015 Analytics Data
consumer

Have a Dashboard,
graphical and tabular
form report

I can visualise the
number of aircraft on
ground per hour and

15 minutes as per
ICAO Category

High High A user should be able to use the
visualisation to assess results picking

the interval and timeframe for the
statistical analysis.

AIA_016 Analytics Data
consumer

Have a Dashboard,
graphical and tabular
form report

I can visualise the
number of

departures or arrivals
per hour & per 15

minutes

Medium High A user should be able to use the
visualisation to assess results picking

the interval and timeframe for the
statistical analysis.

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

95 / 113

AIA_017 Analytics Data
consumer

The ability to create
dashboards

Monitor the progress
of the analytics tasks.
Present the results in

a graphical and
consolidated manner

Medium High A user should be able to use the
visualisation to assess results picking

the interval and timeframe for the
statistical analysis.

CEL_001 Collection Data
Consumer

Query for check-in
information (check-
in counters, luggage
drop-off counter)

I can analyse the
arrival patterns at the

airport

Medium Medium Users should be able to search and
find check-in and luggage information

CEL_002 Collection Data
Consumer

Query for passport
control and security
scan times

I can analyse time for
standard procedures

and predict
bottlenecks

Medium Medium Users should be able to search for
passport control and security times.

CEL_003 Collection Data
Consumer

Query for weather
conditions at the
destination
(historical data and
latest updates)

I can collect historical
weather data for
statistical analysis

Medium Medium User should be able to search and
find historical weather info

CEL_004 Collection Data
Consumer

Query for gate info
and flight delays

I can analyse
behaviour patterns at

the airport

Medium Medium The user should get the gate
information and delays with a short

answering time
CEL_005 Collection Data

Consumer
Query for transit info
(gate, flight delays)

I can perform a
statistical analysis for
in-transit passengers

Medium Medium The user should be able to search and
find transit flight information and

gate
CEL_006 Collection Data

Consumer
Query for luggage
belt and time

I can collect
additional data for
my luggage time
pickup analysis.

Medium Medium The user should be able to query
luggage belt and time

CEL_007 Collection Data
Consumer

Get booking data I can collect and
analyse personalised

profiles of the
traveller

High High The user should be able to receive
Booking data

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

96 / 113

CEL_008 Sharing Data/Asset
provider

be able to upload my
data/assets to the
ICARUS platform

other users of the
platform can

purchase my data
according to my

sharing policy

High High ICARUS should support transactions
between the users for data/assets

purchase

CEL_009 Analytics Data
Scientist

Use a Dashboard to
combine and run
multiple reports

Perform an analysis
of the results

High High A user should be able to use
visualisation tools for statistical

analysis
CEL_010 Notification Data

consumer
Notified for any data
update that I am
using

I can re-run my
analysis based on the

new data

High High The ICARUS platform notifies the user
about updates on the data

ISI_001 Collection
Data

consumer /
Scientist

Access the platform
and download data
about passenger
stratification on
multiple routes,
according to the data
license

I can feed the data to
the epidemiological

simulation
framework for

improved modeling
of human mobility

High High
Demographic data are available to

consumers through ICARUS platform
via proper ACL

ISI_002 Collection
Data

consumer /
Scientist

Access the platform
and download data
about flight return
tickets/bookings,
according to the data
license

I can feed the data to
the epidemiological

simulation
framework for

improved modeling
of effective force of

infection

High Medium

Estimates about distribution of length
of stay are available to consumers

through ICARUS platform via proper
ACL

ISI_003 Collection Data
consumer

Have the platform
automatically
perform quality
check and profiling
on the available data

I can easily decide if
the dataset is of

interest and how I
could import it into

my framework

Medium Medium Datasets on the platform are properly
annotated and verified

ISI_004 Notification/Linking Data
consumer

Be notified when
relevant data
become available
according to my

I can examine it
without missing

potentially important
opportunities

Low Low
When new datasets are available the
system notifies potentially interested

consumers

D3.1 – ICARUS Architecture, APIs Specifications and Technical and

User Requirements

97 / 113

preferences /
interests

ISI_005 Exploration Data
consumer

Be able to analyse
extracts of available
datasets to assess
their actual value or
interest

I can evaluate their
importance/fitting for

my work
Medium Medium Dataset extracts are accessible for

evaluation on the platform

ISI_006 Notification Data
consumer

Be informed about
any update or
modification of the
license/terms of
usage of datasets I
am using or
interested into

I can take immediate
action if needed and

get new relevant data
when possible

Low Medium The platform notifies the users about
any update on data terms of usage

ISI_007 Sharing

Data
consumer /

Data
provider

Have an
automatic/guided
mechanism to help
dealing with data
licensing

I can choose the
proper license being
sure I am compliant
with the licenses of

interconnected
datasets

Medium Medium

The platform performs cross checking
of the data licensing options and

provides guidance for assigning new
licenses

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

98 / 113

Annex III: ICARUS User Requirements

ID Description of the requirement Category
Related

User
Stories

Feature ID
Require

ment
Type

Req_001
ICARUS should inform users for

updates on datasets.
Notification

PACE_001
AIA_007
CEL_003
CEL_010
ISI_004

PLATF_F_01
PLATF_F_02
PLATF_F_48

PF

Req_002
ICARUS should support

connections to various APIs for
data exchange (import/export)

Collection

PACE_001
PACE_014
CEL_008
CEL_002

PLATF_F_01
PLATF_F_02

PF

Req_003

ICARUS should provide
functions to create and manage

shortcuts and workflows
related to the user’s recent

actions or workflows.

Analytics
PACE_002
AIA_001

PLATF_F_30
PLATF_F_51
PLATF_F_52
PLATF_F_53

PF

Req_004
ICARUS should offer a public

and a proprietary and
confidential working space.

Analytics
PACE_023
AIA_002

PLATF_F_46
PLATF_F_47

PF

Req_005
ICARUS should support tags for

datasets in addition to
categories.

Enrichment
Linking

PACE_005
PACE_008
PACE_009
CEL_001
CEL_002
CEL_005

PLATF_F_16
PLATF_F_20

PF

Req_006

ICARUS should support filters
for tagged datasets (i.e. real-

time data, historical,
proprietary, public,

demo/preview, etc).

Linking

PACE_005
PACE_008
PACE_009
CEL_001
CEL_002
CEL_005

PLATF_F_18 PF

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

99 / 113

Req_007
ICARUS analytics should work
with a mixture of confidential

and public data.

Collection,
Exploration
Analytics

PACE_003
AIA_003
AIA_004
AIA_005
AIA_012

PLATF_F_04
PLATF_F_11
PLATF_F_12
PLATF_F_13
PLATF_F_26
PLATF_F_29
PLATF_F_30
PLATF_F_32
PLATF_F_40

PF

Req_008
ICARUS platform should have

high availability Reliability PACE_004 NF

Req_009
ICARUS should support to

search for datasets by type Exploration

PACE_005
PACE_008
PACE_009
PACE_010
CEL_001
CEL_002
CEL_003
CEL_004
CEL_005

PLATF_F_22
PLATF_F_23

PF

Req_010
ICARUS should support to

search for datasets by
keywords

Exploration PACE_005
PLATF_F_22
PLATF_F_23

PF

Req_011
ICARUS should provide data
sets which are relevant to my

search.

Linking,
Recommen
dation

PACE_005
PACE_015

PLATF_F_18
PLATF_F_51

PF

Req_012
ICARUS should support to

search for datasets by date and
time.

Exploration PACE_005
PLATF_F_22
PLATF_F_23

PF

Req_013
ICARUS should be able to

support search for historical
flight information

Exploration
PACE_005
PACE_009

PLATF_F_22
PLATF_F_23

DF

Req_014

ICARUS should be able to
integrate flight information

data with flight number, airline,
date and time of

departure/arrival.

Curation PACE_009
PLATF_F_11
PLATF_F_12
PLATF_F_13

DF

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

100 / 113

Req_015

ICARUS should be able to
integrate airport weather data
by period with airport identifier

(IATA/ICAO code, airport/city
name).

Curation
PACE_010
CEL_003

PLATF_F_11
PLATF_F_12
PLATF_F_13

DF

Req_016

ICARUS platform should ensure
that the users can query data

that they are authorised to
access.

Exploration
Analytics

PACE_006
ISI_001
ISI_002

PLATF_F_26 PF

Req_017
ICARUS platform should offer

different level of confidentiality
for the datasets.

Collection,
Exploration
Analytics

PACE_003
PACE_021
AIA_002

PLATF_F_04
PLATF_F_26

PF

Req_018
ICARUS platform should provide

a set of advanced analytics
algorithms.

Analytics

PACE_007
AIA_003
AIA_004
AIA_005
CEL_009
ISI_005

PLATF_F_33
PLATF_F_34

PF

Req_019

ICARUS platform should provide
features to either customise the
defined analytics algorithms or

define custom analytics
algorithms.

Analytics

PACE_007
AIA_003
AIA_004
AIA_005
CEL_009
ISI_005

PLATF_F_29 PF

Req_020
ICARUS platform should provide
private space where I can store

the data obtained through a
query.

Analytics
PACE_023
AIA_002
AIA_003

PLATF_F_43
PLATF_F_46
PLATF_F_47

PF

Req_021
ICARUS should be able to

integrate airport data with
IATA/ICAO code, airport or city

name

Curation PACE_008
PLATF_F_11
PLATF_F_12
PLATF_F_13

DF

Req_022
ICARUS should support file

upload and download services
for common text formats such

as ASCII, CSV, XML, YAML, JSON

Collection,
Exploration

PACE_011
PACE_014
CEL_008

PLATF_F_41
PLATF_F_42
PLATF_F_43

PF

Req_023
ICARUS platform should allow
the user to select a file format
for download if a conversion is

feasible.

Exploration
PACE_011
CEL_007

PLATF_F_27 PF

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

101 / 113

Req_024
ICARUS platform should suggest

available data from other
sources related to my queries.

Recommen
dation

PACE_012
AIA_008
ISI_004

PLAT_F_23 PF

Req_025
ICARUS should be able to

integrate obstacle data with
runways and runway data with

airports

Curation PACE_013
PLATF_F_11
PLATF_F_12
PLATF_F_13

DF

Req_026
ICARUS should be able to

combine airport data, runway
data and obstacle data and

download them as a file

Curation PACE_013
PLATF_F_11
PLATF_F_12
PLATF_F_13

DF

Req_027
ICARUS platform should be able
combine data and provide the

means to obtain them.

Collection,
Exploration

PACE_013
CEL_007
ISI_001
ISI_002

PLATF_F_42 PF

Req_028 ICARUS should support the
upload of external data sets Collection

PACE_014
PACE_021
CEL_008

PLATF_F_03 PF

Req_029
ICARUS should provide data
conversion for uploaded file
format into ICARUS platform

internal data format.

Curation
PACE_014
PACE_021

PLATF_F_11
PLATF_F_12
PLATF_F_13
PLATF_F_27

PF

Req_030
ICARUS platform should provide

features for adding additional
(semantic) information to data

assets

Linking PACE_015
PLATF_F_16
PLATF_F_17

PF

Req_031
The user should be able to

explore the ICARUS data model
and can provide suggestions to

the data administrator.

Curation
PACE_015
PACE_016
CEL_008

PLATF_F_11
PLATF_F_12
PLATF_F_13

PF

Req_032
ICARUS platform should provide

features for updating my
datasets

Curation PACE_016 PLATF_F_14 PF

Req_033
ICARUS platform should inform

a user if data, for which the
user owns a license to use, have

been updated or deleted.

Notification
AIA_007
CEL_11
ISI_004

PlATF_F_48
PlATF_F_49

PF

Req_034
ICARUS platform should provide

features for defining and
modifying the license model of

my data.

Sharing

PACE_017
AIA_009
AIA_010
AIA_011
ISI_002
ISI_006
ISI_007

PLATF_F_56
PLATF_F_57
PLATF_F_58
PLATF_F_59

PF

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

102 / 113

Req_035
ICARUS should provide

indicative usage analytics on
the datasets usage within the

platform

Analytics PACE_017 PLATF_F_45 PF

Req_036

ICARUS platform should
support the negotiations

between data provider and
data consumer until the

agreement has been signed.

Sharing

PACE_017
PACE_019
AIA_010
CEL_008
ISI_007

PLATF_F_60
PLATF_F_61
PLATF_F_62

PF

Req_037
ICARUS platform should provide

the means to improve the
quality level of the user’s data

Collection
PACE_018
ISI_003

PLATF_F_06
PLATF_F_07 PF

Req_038

ICARUS platform should provide
mechanisms to define the

licensing requirements and
privacy restrictions

(DSGVO/GDPR compliance) for
a dataset

Collection
PACE_019
PACE_020

PLATF_F_08
PLATF_F_09
PLATF_F_10

PF

Req_039 ICARUS platform should provide
a tool for data anonymisation. Collection PACE_020 PLATF_F_08 PF

Req_040
ICARUS should be able to

support the upload of external
airport, runway and obstacle

data

Collection PACE_021
PLATF_F_01
PLATF_F_02

DF

Req_041
ICARUS should be able to

support to upload external
airport weather data

Collection PACE_021
PLATF_F_01
PLATF_F_02

DF

Req_042
ICARUS should support a

simplified upload of data, if it
used only by myself.

Collection
PACE_014
PACE_021
CEL_008

PLAT_F_05 PF

Req_043 ICARUS should be able to link
different datasets Curation

PACE_015
PACE_022
AIA_001
AIA_003
AIA_004
AIA_005

PLATF_F_16 PF

Req_044
ICARUS should support know-
your-customer practices, with
organization registration and

user login with credentials

Security
PACE_023
AIA_002

PLATF_F_46 NF

Req_045
ICARUS platform should provide

features for transferring data
from my confidential space to

the ICARUS platform

Collection,
Analytics PACE_023

PLATF_F_43
PLATF_F_46
PLATF_F_47

PF

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

103 / 113

Req_046
ICARUS platform should provide

the functionality to manage
(semantic) links between data

assets.

Linking PACE_015 PLATF_F_16 PF

Req_047
ICARUS platform should be able
to suggest integrated data sets
in the context of queries and

data uploads.

Linking
PACE_012
AIA_008

PLATF_F_17 PF

Req_048
ICARUS should be able to

integrate flight information
data with internal AIA airport

data

Curation AIA_003
PLATF_F_11
PLATF_F_12
PLATF_F_13

DF

Req_049

ICARUS should provide business
intelligence tools that enable
the automated generation of

event driven alerts and
customised reports and notify

user about results.

Analytics,
Notification

AIA_002
AIA_006

PLATF_F_37
PLATF_F_38
PLATF_F_41

PF

Req_050
ICARUS should be able to
integrate structured and

unstructured data
Collection AIA_002 PLATF_F_14 PF

Req_051 ICARUS should be able to report
and visualise analysis results. Analytics

AIA_004
AIA_012
AIA_015

PLATF_F_37
PLATF_F_38

PF

Req_052
ICARUS should allow to use look
up tables (SXF is an IATA code
for Berlin Schoenefeld Airport)

Analytics AIA_012 PLATF_F_16 DF

Req_053
ICARUS should provide

comprehensive means to
visualise and to compare results

(graphical, tabular, …)

Analytics

AIA_006
AIA_015
AIA_016
AIA_017
CEL_009

PLATF_F_37
PLATF_F_38
PLATF_F_39
PLATF_F_53

PF

Req_054
ICARUS should be able to

execute analytics and
workflows automatically

(through pre-scheduled jobs).

Analytics AIA_005
PLATF_F_29
PLATF_F_30
PLATF_F_40

PF

Req_055

ICARUS should provide
dashboards and help the user

compare the results with
minimum number of

interactions.

Analytics

AIA_006
AIA_015
AIA_016
AIA_017
CEL_009

PLATF_F_39 PF

Req_056
ICARUS platform should

support connections to web
services and provide API for
the upload and download of

Collection AIA_007
PLATF_F_01
PLATF_F_02
PLATF_F_48

PF

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

104 / 113

data with other data sources
and sinks.

Req_057

ICARUS platform should provide
a listing with all the available

data sources and related
information and among others

the terms of use for each one of
them.

Collection
Recommen
dation

AIA_008
PLATF_F_03
PLATF_F_51

PF

Req_058

ICARUS platform should provide
the monitoring, logging and

auditing mechanisms in order
for the stakeholders to be able
to audit data usage and resolve

any disputes

Sharing AIA_014 PLATF_F_45 PF

Req_059
ICARUS should provide a

guideline or a guidance to
create an appropriate license

definition and agreement.

Sharing

AIA_010
CEL_008
ISI_006
ISI_007

PLATF_F_55
PLATF_F_56
PLATF_F_57

PF

Req_060
ICARUS should provide the

features for the management
and update of data licenses.

Sharing
AIA_011
ISI_006

PLATF_F_58
PLATF_F_59

PF

Req_061
ICARUS should support

notifications regarding the
result of the execution of

scheduled analytics

Analytics

PACE_003
AIA_003
AIA_004
AIA_005

PLATF_F_50 PF

Req_062
ICARUS should provide a GUI

where the progress of
processes and workflows can

be monitored.

Analytics

PACE_003
AIA_003
AIA_004
AIA_005

PLATF_F_50 PF

Req_063
ICARUS should have the ability
to create edit and run what if

scenarios.
Analytics

AIA_013
AIA_016

PLATF_F_29
PLATF_F_30
PLATF_F_40

PF

Req_064
ICARUS platform should provide

information about my data
usage: which datasets, which

algorithms, which reports.

Analytics AIA_014 PLATF_F_45 PF

Req_065
ICARUS should be able to

integrate aircraft on ground
data with ICAO category

Analytics AIA_015
PLATF_F_11
PLATF_F_12
PLATF_F_13

DF

Req_066 ICARUS should provide features
for statistical analyses. Analytics

AIA_015
AIA_016
AIA_017
CEL_003
CEL_005

PLATF_F_29
PLATF_F_30
PLATF_F_40

PF

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

105 / 113

CEL_009

Req_067
ICARUS should provide means
retrieve data from Amadeus

Airport Operational Database
(AODB)

Analytics AIA_017 PLATF_F_01 DF

Req_068
ICARUS should be able to

integrate flight number with
airport data like check in

counter, luggage information

Collection CEL_001
PLATF_F_11
PLATF_F_12
PLATF_F_13

DF

Req_069

ICARUS should be able to
integrate flight number with
security process information

like passport control or security
scan.

Collection CEL_002
PLATF_F_11
PLATF_F_12
PLATF_F_13

DF

Req_070
IARUS should be able to

integrate airport locations with
weather data, current weather

as well as statistical weather

Collection CEL_003
PLATF_F_11
PLATF_F_12
PLATF_F_13

DF

Req_071
ICARUS should be able to

integrate flight number with
airport information and flight

plan data (e. g. delays)

Collection CEL_004
PLATF_F_11
PLATF_F_12
PLATF_F_13

DF

Req_072
ICARUS should provide the last

modification time of each
dataset.

Collection CEL_010
PLATF_F_01
PLATF_F_02
PLATF_F_48

PF

Req_073
ICARUS should be able to
integrate flight data with

connection flight information.
Collection CEL_005

PLATF_F_11
PLATF_F_12
PLATF_F_13

DF

Req_074

ICARUS platform should be able
to integrate personal booking
data with other data like fight
information data, airport data,

…

Collection CEL_007
PLATF_F_11
PLATF_F_12
PLATF_F_13

DF

Req_075
ICARUS should be able to

anonymise data so that legal
regulations can be considered.

Collection
CEL_007
ISI_001

PLATF_F_08
PLATF_F_09
PLATF_F_10

PF

Req_076 ICARUS should be able to assign
costs to data assets. Sharing CEL_008

PLATF_F_56
PLATF_F_57

PF

Req_077
ICARUS should provide features

for different forms of
payments.

Sharing CEL_008
PLATF_F_56
PLATF_F_57

PF

Req_078
ICARUS should provide the
functionality to save and

restore user defined
configurations.

Analytics
PACE_002
CEL_009

PLATF_F_43 PF

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

106 / 113

Req_079
ICARUS platform should be

able to integrate route
information with passenger

information.

Collection ISI_001
PLATF_F_11
PLATF_F_12
PLATF_F_13

DF

Req_080
ICARUS platform should be able

to perform aggregations on
data sets.

Collection ISI_001 PLATF_F_14 PF

Req_081
ICARUS platform should be able

to integrate passenger data
with booking data

Collection ISI_002
PLATF_F_11
PLATF_F_12
PLATF_F_13

DF

Req_082
ICARUS platform should be able

to check that the data usage
and delivery is compliant to the

defined data access rights

Analytics ISI_002 PLATF_F_32 PF

Req_083 ICARUS platform should provide
data cleaning mechanisms. Collection

PACE_018
ISI_003

PLATF_F_15 PF

Req_084
ICARUS platform should provide
mechanisms for anonymisation

and data cleaning
Collection

PACE_018
ISI_003

PLATF_F_10
PLATF_F_15

PF

Req_085
The platform should be able to

integrate data sets based on
common fields.

Linking ISI_001 PLATF_F_18 PF

Req_086 ICARUS should support API for
data export Collection

PACE_001
CEL_003

PLATF_F_01
PLATF_F_02

PF

Req_087 ICARUS should support the
provision of data updates. Collection PACE_016

PLATF_F_01
PLATF_F_02

PF

Req_088

ICARUS should support an
extended list of algorithms on a

mixture of confidential and
public data in order to perform

big data analytics

Functional
Suitability

PACE_006
PACE_020
PACE_023
AIA_002
ISI_002

PLATF_F_28
PLATF_F_31
PLATF_F_32
PLATF_F_36

NF

Req_089
ICARUS should be able to

execute big data analytics in a
timely and efficient manner

Performanc
e efficiency

PACE_004
PACE_010
AIA_017
ISI_005

PLATF_F_35 NF

Req_090
ICARUS should guarantee the

efficient and effective resource
allocation for the success
analytics jobs execution

Performanc
e efficiency

AIA_017
CEL_004

PLATF_F_35 NF

Req_091 ICARUS should be able to
handle and store large datasets

Performanc
e efficiency

PACE_005
PACE_010
ISI_002

 NF

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

107 / 113

Req_092

ICARUS should enable the
interconnection and exchange

of information with other
platforms or devices with

appropriate secure mechanisms
(e.g. REST API)

Compatibili
ty

PACE_001
PACE_011
PACE_017
PACE_023
AIA_002

PLATF_F_01
PLATF_F_02

NF

Req_093
ICARUS should be able to

support the functional and
flexible operation in a

distributed cloud infrastructure

Compatibili
ty NF

Req_094
ICARUS should be able to

consume and handle different
datasets in various formats (e.g.

CSV, JSON, XML files)

Compatibili
ty

PACE_011
PACE_014
PACE_021
CEL_008

PLATF_F_02
PLATF_F_14
PLATF_F_41
PLATF_F_42

NF

Req_095

ICARUS should provide an easy-
to-use and user-friendly

interface in which the analytics
and visualisation processes are

supported by guides and
manuals

Usability

AIA_006
AIA_015
AIA_016
AIA_017
CEL_009
ISI_007

PLATF_F_07
PLATF_F_56

NF

Req_096
ICARUS should provide a user

interface that supports
straightforward task

accomplishment

Usability PACE_002
PLATF_F_29
PLATF_F_30

NF

Req_097
ICARUS should provide easy

navigation through the
platform features with support
of dashboards or wizard/guide

Usability

PACE_002
AIA_010
AIA_013
ISI_007

PLATF_F_31
PLATF_F_32

NF

Req_098
ICARUS should provide the
suitable error protection

methods for all input fields
Usability

PACE_018
ISI_003

 NF

Req_099
ICARUS should enable the
secure storage of assets
(datasets, reports, etc.)

Reliability PACE_020
PLATF_F_46
PLATF_F_47

NF

Req_100
ICARUS should be able to

handle simultaneous requests
on a timely and efficient

manner

Reliability
PACE_004
CEL_004

 NF

Req_101
ICARUS should provide the

mechanisms to recover after
system failure conditions

Reliability NF

Req_102
ICARUS should be able to

handle software errors without
affecting the platform overall

functionality

Reliability NF

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

108 / 113

Req_103
ICARUS should ensure different

authorisation access to
different datasets

Security

PACE_003
PACE_006
PACE_017
AIA_002
ISI_001

PLATF_F_04
PLATF_F_36
PLATF_F_47

NF

Req_104
ICARUS should provide the

appropriate logging
mechanisms for all operations

Security
PACE_017
AIA_014

PLATF_F_26 NF

Req_105
ICARUS should be able to verify
the identity of the user/subject

performing any operation
Security

PACE_017
AIA_014

 NF

Req_106 ICARUS should be able to trace
all user/subject operations Security

PACE_017
AIA_014

 NF

Req_107
ICARUS should be composed by
components that are operating

independently

Maintainab
ility NF

Req_108
ICARUS should provide the

tools that support enhanced
system monitoring and

debugging

Maintainab
ility NF

Req_109
ICARUS should provide a

sophisticated alarm mechanism
to identify failures or

deficiencies

Maintainab
ility

PACE_018
ISI_003

 NF

Req_110
ICARUS should provide the

proper mechanisms for system
upgrade with minimum

downtime

Maintainab
ility PACE_004 NF

Req_111
ICARUS should offer easy

installation process in a timely
manner

Portability NF

Req_112
ICARUS should support

deployment on various Linux
distributions

Portability NF

Req_113
ICARUS should be composed by
independent components that
are replaceable with minimum

impact and effort

Portability NF

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

109 / 113

Annex IV: ICARUS Technical Requirements Backlog

 ID Description of the requirement

Relevant
Functional &

Non-Functional
Requirements

Data Collection
Import &
Export

TR_001 The ICARUS platform shall allow data to be imported from
external sources.

Req_002,
Req_028,
Req_032,
Req_055,
Req_056,
Req_067

TR_002 The ICARUS platform shall allow the user to upload and
download files.

Req_022,
Req_026,
Req_040,
Req_041

TR_003 The ICARUS platform should offer a simplified data check-in
process for data that the providers intend to keep for
personal usage only.

Req_042

TR_004 The ICARUS platform should allow the user to save datasets
that are currently in a private analytics space on the central
platform storage.

Req_045

TR_005 The ICARUS platform shall offer a well-defined API for data
export.

Req_086

TR_006 The ICARUS platform shall support updating and maintaining
uploaded datasets.

Req_087

TR_007 The ICARUS platform should allow the user to choose in
which format to download data, when a transformation
service is available.

Req_024,
Req_094

TR_008 The ICARUS platform should provide a service that
transforms data from a format to another for selected
predefined data formats.

Req_023,
Req_094

TR_009 The import and export mechanisms of the ICARUS platform
should support large files.

Req_091

TR_010 The ICARUS platform should be able to consume data from
external RESTful APIs.

Req_056,
Req_092

TR_011 The ICARUS platform should support end-to-end data
encryption.

From external
stakeholders
during MVP
validation
interviews

TR_012 The ICARUS platform should support all data types described
in the data requirements reported in D1.1

D1.1 (also
relevant to
Req_013,
Req_014,
Req_015,
Req_021,
Req_025,
Req_048,
Req_065,
Req_068,

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

110 / 113

 ID Description of the requirement

Relevant
Functional &

Non-Functional
Requirements

Req_069,
Req_070,
Req_071,
Req_073,
Req_074,
Req_079,
Req_081)

TR_013 The ICARUS platform should allow users to choose which
field types in their datasets will be encrypted.

Stemming from
TR_011

Data
Cleansing

TR_014 The ICARUS platform should provide data cleansing
functionalities.

Req_037,
Req_083,
Req_084

Data
Anonymisati
on

TR_015 The ICARUS platform should provide a data anonymisation
tool / service.

Req_039,
Req_075,
Req_084

Data Enrichment
Data
Representati
on,
Semantics &
Metadata

TR_016 The ICARUS platform shall comply with a common
underlying metadata schema

Requirement
coming from and
clarified in D2.1

TR_017 The ICARUS platform shall comply with a common
underlying data model

Req_002,
Req_028,
Req_029,
Req_032,
Req_055

TR_018 The ICARUS platform shall ensure that external data being
imported in ICARUS are mapped to the ICARUS data model
(in a semi-automatic manner).

Req_002,
Req_028,
Req_029,
Req_032,
Req_055

TR_019 The ICARUS platform should provide the ability to data
providers to assign predefined and/or custom tags
(keywords) to their datasets.

Req_005,
Req_010

TR_020 The ICARUS platform shall offer a service that enriches
uploaded data based on information from certain
predefined controlled vocabularies (e.g. airport codes).

Req_030,
Req_052

TR_021 The ICARUS platform shall enable the users to assign IPR
related attributes to the datasets.

Req_038

TR_022 The ICARUS platform should provide predefined data license
templates

Req_034

TR_023 The ICARUS platform should allow data providers to
customise the provided data license templates.

Req_034,
Req_060

TR_024 The ICARUS platform shall allow the user to define and
configure a custom data license.

Req_034,
Req_060

TR_025 The ICARUS platform should store and show in an intuitive
manner provenance-related information, e.g. when a
dataset was last modified.

Req_072

TR_026 The ICARUS platform shall offer an interactive UI to let the
user browse the ICARUS data model.

Req_031,
Req_046,
Req_047

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

111 / 113

 ID Description of the requirement

Relevant
Functional &

Non-Functional
Requirements

TR_027 The ICARUS platform should support a model lifecycle
management service that enables the user to recommend
extensions to the data model.

Req_031,
Req_046,
Req_047

TR_028 The ICARUS platform should support a process / service to
enable the ICARUS administrator to review the data model
recommendations and approve or decline them.

Req_031,
Req_046,
Req_047

Asset Exploration and Extraction
Search TR_029 The ICARUS platform shall support search functionality over

the datasets to allow the user to find datasets by type,
keyword, date, time.

Req_006,
Req_009,
Req_010,
Req_011,
Req_012

TR_030 The ICARUS platform should save the query history of the
user and allow the user to review it.

Req_020

TR_031 The ICARUS platform shall retrieve and show the datasets
that are relevant to a dataset that is returned as a query
result.

Req_024,
Req_047

TR_032 The ICARUS platform should provide a mechanism for
identifying connections among datasets based on their
mapping to the common underlying data schema/model.

Req_043

TR_033 The ICARUS platform should allow for spatiotemporal
information to be un-encrypted in the datasets so that
search queries can be performed on it.

Req_012

Data Sharing TR_034 The ICARUS platform shall provide an information catalogue
about all datasets that are open or available for sharing (by
their respective data providers).

Req_057

TR_035 The ICARUS platform shall enable the creation of data
sharing contracts with detailed terms in an immutable
manner.

Req_059

TR_036 The ICARUS shall provide walkthroughs and guidelines
regarding the creation of data sharing contracts.

Req_059

TR_037 The ICARUS platform shall allow users to set pricing terms for
their datasets.

Req_076

TR_038 The ICARUS platform should support various payment
methods.

Req_077

TR_039 The ICARUS platform should provide a mechanism for data
providers and data consumers to negotiate prior to signing
the data sharing contract.

Req_036

TR_040 The ICARUS platform may allow existing, active data
contracts (traditionally signed by a data provider) to be
facilitated / executed by the platform.

From external
stakeholders
during MVP
validation
interviews

TR_041 The ICARUS platform shall allow users to request to purchase
and to access datasets not owned by them

Requirement
coming from and
clarified in D2.2

TR_042 The ICARUS platform shall allow users to accept or deny
requests for access on their datasets made by other users

Requirement
coming from and
clarified in D2.2

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

112 / 114

 ID Description of the requirement

Relevant
Functional &

Non-Functional
Requirements

TR_043 The ICARUS platform shall store the data sharing contracts in
a DLT-based repository for non-repudiation purposes.

From external
stakeholders
during MVP
validation
interviews

Data Analysis & Visualisation

Analysis &
Visualisation

TR_044 The ICARUS platform should provide a UI that allows the user
to define, configure, review and manage data analysis jobs
and save configurations for later re-usage.

Req_003,
Req_055,
Req_078

TR_045 The ICARUS platform shall enable the integration and
combined analysis over multiple datasets.

Req_007

TR_046 The ICARUS platform should allow the easy configuration
and application of advanced data analysis algorithms.

Req_018,
Req_019,
Req_088

TR_047 The ICARUS platform shall enable the application of
predefined data analysis algorithms on datasets.

Req_019

TR_048 The ICARUS platform should support the combination
(merging) of datasets based on common fields into one
dataset.

Req_027,
Req_026,
Req_085

TR_049 The ICARUS platform should provide a monitoring UI for the
progress and status of data analysis jobs.

Req_062

TR_050 The ICARUS platform should provide tools/services to define
and execute what-if scenarios on the datasets.

Req_063

TR_051 The ICARUS platform shall provide tools and services to apply
machine learning algorithms

Requirement
coming from and
clarified in D2.2

TR_052 The ICARUS platform should provide tools and services to
apply deep learning algorithms

Requirement
coming from and
clarified in D2.2

TR_053 The ICARUS platform shall provide tools and services to apply
basic analytics

Requirement
coming from and
clarified in D2.2

TR_054 The ICARUS platform should provide tools and services that
enable users to perform statistical analysis over datasets

Req_066

TR_055 The ICARUS platform should offer data management
methods and algorithms that handle both structured and
unstructured data.

Req_050

TR_056 The ICARUS platform shall offer data visualisation tools/
functionalities.

Req_051,
Req_053

TR_057 The ICARUS platform shall enable the users to define and
schedule data analysis jobs.

Req_054

TR_058 The ICARUS platform should enable the users to define,
configure and schedule data management and processing
recipes

From MVP

TR_059 The ICARUS platform should allow a user to easily perform
aggregations on a dataset.

Req_080

TR_060 The ICARUS platform shall support analytics jobs in a scalable
and reliable manner

Req_089

D3.1 – ICARUS Architecture, APIs Specifications and Technical and
User Requirements

113 / 113

 ID Description of the requirement

Relevant
Functional &

Non-Functional
Requirements

TR_061 The ICARUS platform should provide tools and services to
perform resource allocation for data analysis purposes.

Req_090

Added value services and platform features
Notifications TR_062 The ICARUS platform shall allow users to manage their

notification preferences.
Req_001,
Req_033,
Req_049

TR_063 The ICARUS platform should inform users with active
contracts on a dataset that the dataset has been updated.

Req_001,
Req_033

TR_064 The ICARUS platform should provide notifications to inform
users when their scheduled analytics jobs finish.

Req_049,
Req_061

Usage
Analytics

TR_065 The ICARUS platform should provide data usage analytics to
the users for the datasets they own.

Req_035,
Req_064

Security and
Privacy

TR_066 The ICARUS platform shall provide public, private and
confidential working spaces.

Req_004

TR_067 The ICARUS platform shall ensure that access control over
datasets is applied according to the data provider's policies
and the terms of relevant active valid data sharing contracts.

Req_016,
Req_082

TR_068 The ICARUS platform shall forbid unauthorised user access
to the platform and the datasets.

Req_044

TR_069 The ICARUS platform storage shall be secure. Req_099
TR_070 The ICARUS platform should ensure different authorisation

levels for accessing datasets.
Req_017,
Req_088,
Req_103

TR_071 The ICARUS platform should be able to verify the identity of
the user/subject performing any operation in the platform.

Req_105

TR_072 The ICARUS platform shall provide a secure and controlled
registration process for new users

Requirement
coming from and
clarified in D2.2

