

H2020 - INDUSTRIAL LEADERSHIP - Information and Communication Technologies (ICT)

ICT-14-2016-2017: Big Data PPP: cross-sectorial and cross-lingual data integration and experimentation

ICARUS:
“Aviation-driven Data Value Chain for Diversified Global and Local Operations”

D3.3 – Architecture, Core Data and Value Added Services Bundles Specifications-

v2.00

Disclaimer:
The ICARUS project is co-funded by the Horizon 2020 Programme of the European Union. The information and views set out in this publication are

those of the author(s) and do not necessarily reflect the official opinion of the European Communities. Neither the European Union institutions

and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein.

© Copyright in this document remains vested with the ICARUS Partners.

Workpackage: WP3 – ICARUS Platform Design

Authors: UBITECH, SUITE5, SILO, ENG, UCY

Status: Final Classification: Public

Date: 17/07/2019 Version: 1.00

Ref. Ares(2019)4661750 - 18/07/2019

D3.3 – Architecture, Core Data and Value Added Services Bundles

Specifications-v2.00

2 / 134

ICARUS Project Profile

Partners

 UBITECH (UBITECH) Greece

 ENGINEERING - INGEGNERIA INFORMATICA SPA (ENG) Italy

PACE Aerospace Engineering and Information Technology

GmbH (PACE)
Germany

SUITE5 DATA INTELLIGENCE SOLUTIONS LIMITED (SUITE5) Cyprus

 UNIVERSITY OF CYPRUS (UCY) Cyprus

 CINECA CONSORZIO INTERUNIVERSITARIO (CINECA) Italy

 OAG Aviation Worldwide LTD (OAG)
United

Kingdom

 SingularLOGIC S.A. (SILO) Greece

ISTITUTO PER L'INTERSCAMBIO SCIENTIFICO (ISI) Italy

 CELLOCK LTD (CELLOCK) Cyprus

ATHENS INTERNATIONAL AIRPORT S.A (AIA) Greece

 TXT e-solutions SpA (TXT) – 3rd party of PACE Italy

Grant Agreement No.: 780792

Acronym: ICARUS

Title: Aviation-driven Data Value Chain for Diversified Global and

Local Operations

URL: http://www.icarus2020.aero

Start Date: 01/01/2018

Duration: 36 months

D3.3 – Architecture, Core Data and Value Added Services Bundles

Specifications-v2.00

3 / 134

Document History
Version Date Author (Partner) Remarks

0.10 03/06/2019
Dimitrios Miltiadou, Konstantinos

Perakis (UBITECH)
Initial Table of Contents

0.20 06/06/2019
Dimitrios Miltiadou, Konstantinos

Perakis (UBITECH)
Initial outline of Sections 2 and 3

0.30 10/06/2019

Dimitrios Miltiadou, Konstantinos

Perakis (UBITECH), Fenareti

Lampathaki, Evmorfia Biliri (Suite5)

Initial contribution to section 2

0.40 12/06/2019

Dimitrios Miltiadou, Konstantinos

Perakis (UBITECH), Fenareti

Lampathaki, Evmorfia Biliri (Suite5)

Updated contribution to section 2,

Initial contribution to section 3

0.50 14/06/2019

Dimitrios Miltiadou, Konstantinos

Perakis (UBITECH), Fenareti

Lampathaki, Evmorfia Biliri (Suite5)

Updated contribution to section 3:

3.3, 3.6, 3.7, 3.8, 3.11, 3.13, 3.14,

3.19 by UBITECH,

3.4, 3.5, 3.10, 3.15 by Suite5

0.60 17/06/2019

Dimitrios Miltiadou, Konstantinos

Perakis (UBITECH), Fenareti

Lampathaki, Evmorfia Biliri (Suite5),

Susanna Bonura, Domenico Messina

(ENG), Dimosthenis Stefanidis, Loukas

Pouis (UCY), Pavlos Lampadaris, Tasos

Violetis (SILO)

Updated contributions to sections:

3.3, 3.6, 3.7, 3.8, 3.11, 3.13, 3.14,

3.19 by UBITECH,

3.4, 3.5, 3.10, 3.15 by Suite5,

3.2, 3.9, 3.12 by SILO,

3.17, 3.18, 3.20 by ENG,

3.16, 3.21,3.22 by UCY

0.70 20/06/2019

Dimitrios Miltiadou, Konstantinos

Perakis (UBITECH), Fenareti

Lampathaki, Evmorfia Biliri (Suite5),

Susanna Bonura, Domenico Messina

(ENG), Dimosthenis Stefanidis, Loukas

Pouis (UCY), Pavlos Lampadaris, Tasos

Violetis (SILO)

Updated contributions to sections:

3.3, 3.6, 3.7, 3.8, 3.11, 3.13, 3.14,

3.19 by UBITECH,

3.4, 3.5, 3.10, 3.15 by Suite5,

3.2, 3.9, 3.12 by SILO,

3.17, 3.18, 3.20 by ENG,

3.16, 3.21,3.22 by UCY

0.80 24/06/2019

Dimitrios Miltiadou, Konstantinos

Perakis (UBITECH), Fenareti

Lampathaki, Evmorfia Biliri (Suite5),

Susanna Bonura, Domenico Messina

(ENG), Dimosthenis Stefanidis, Loukas

Pouis (UCY), Pavlos Lampadaris, Tasos

Violetis (SILO)

Updated contributions to sections:

3.3, 3.6, 3.7, 3.8, 3.11, 3.13, 3.14,

3.19 by UBITECH,

3.4, 3.5, 3.10, 3.15 by Suite5,

3.2, 3.9, 3.12 by SILO,

3.17, 3.18, 3.20 by ENG,

3.16, 3.21,3.22 by UCY

0.90 28/06/2019
Dimitrios Miltiadou, Konstantinos

Perakis (UBITECH)

Updated full draft circulated for

internal review

0.90_TXT 08/07/2019 Michele Sesana (TXT) Internal review

0.90_CINECA 09/07/2019 Giorgio Pedrazzi (CINECA) Internal review

0.95 16/07/2019
Dimitrios Miltiadou, Konstantinos

Perakis (UBITECH)

Updated version addressing

comments received during the

internal review process

1.0 17/07/2019
Fenareti Lampathaki (Suite5), Dimitris

Alexandrou (UBITECH)

Final version for submission to the

EC

D3.3 – Architecture, Core Data and Value Added Services Bundles

Specifications-v2.00

4 / 134

Executive Summary
The document at hand, entitled “Architecture, Core Data and Value Added Services Bundles

Specifications-v2.00” constitutes a report of the efforts and the produced results of Tasks T3.1

“Technology Requirements”, T3.2 “Demonstrator User Requirements ”, T3.3 “Platform

Architecture Design and APIs Specifications”, T3.4 ”Core Data Service Bundles In-depth

Design” and T3.5 “ICARUS Added Value Services Design” of WP3. The purpose of this

deliverable is to deliver the complementary documentation of the architecture of the ICARUS

platform and the updated documentation of the components of the platform with regard to

their functionalities and their offered interfaces. Within this context, the scope of the current

report can be described in the following axes:

• To present a comprehensive documentation of the architecture of the integrated

ICARUS platform. A brief description of each component is presented focusing on their

positioning within the platform’s architecture. For each component, the platform

functionalities that are undertaken by this component are described and the

component’s interactions with the rest of the components for the realisation of these

functionalities is documented.

• To provide the updated documentation of the components of the ICARUS platform.

For each component of the integrated ICARUS platform, the core functionalities that

the component offers are described. In addition to this, the involvement of each

component in the ICARUS platform’s services and in the designed platform’s

workflows is presented. Furthermore, for each component, the interactions with the

rest of the components, as well as the interfaces that are offered in order to facilitate

the required exchange of information, are presented. Finally, the technical details of

these interfaces is documented.

The current deliverable presents the updated and supplementary documentation of the

architecture of the integrated ICARUS platform and of all the components of the platform. It

should be noted though that all tasks of WP3 remain active until M32 according to the ICARUS

Description of Action. Thus, the design of the ICARUS platform’s architecture, as well as the

design and specifications of the components of the architecture, will receive the necessary

updates and refinements based on further identified functional requirements that will be

translated into technical requirements, originating mainly from the evaluation and feedback

received from the demonstrator partners. The upcoming versions of this deliverable, namely

D3.4 and D3.5, will provide the necessary documentation of the aforementioned changes.

D3.3 – Architecture, Core Data and Value Added Services Bundles

Specifications-v2.00

5 / 134

Table of Contents
1 Introduction .. 11

1.1 Purpose .. 11

1.2 Document Approach ... 12

1.3 Relation to other ICARUS Results .. 12

1.4 Structure .. 13

2 ICARUS Platform Architecture ... 15

3 ICARUS Components Designs .. 23

3.1 Overview .. 23

3.2 Anonymiser .. 23

3.2.1 Services Outline .. 23

3.2.2 Interfaces .. 24

3.3 Cleanser .. 26

3.3.1 Services Outline .. 26

3.3.2 Interfaces .. 27

3.4 Mapper ... 29

3.4.1 Services Outline .. 29

3.4.2 Interfaces .. 30

3.5 Wallet Manager .. 34

3.5.1 Services Outline .. 34

3.5.2 Interfaces .. 34

3.6 Encryption Manager ... 34

3.6.1 Services Outline .. 34

3.6.2 Interfaces .. 35

3.7 Decryption Manager ... 37

3.7.1 Services Outline .. 37

3.7.2 Interfaces .. 38

3.8 Key-Pair Administrator ... 39

3.8.1 Services Outline .. 39

3.8.2 Interfaces .. 40

3.9 Data Handler .. 41

D3.3 – Architecture, Core Data and Value Added Services Bundles

Specifications-v2.00

6 / 134

3.9.1 Services Outline .. 41

3.9.2 Interfaces .. 42

3.10 Data License and Agreement Manager .. 51

3.10.1 Services Outline .. 51

3.10.2 Interfaces .. 52

3.11 Policy Manager ... 58

3.11.1 Services Outline .. 58

3.11.2 Interfaces .. 60

3.12 ICARUS Storage and Indexing .. 74

3.12.1 Services Outline .. 74

3.12.2 Interfaces .. 75

3.13 Master Controller ... 75

3.13.1 Services Outline .. 75

3.13.2 Interfaces .. 76

3.14 OnPremise Worker and SecureSpace Worker .. 78

3.14.1 Services Outline .. 78

3.14.2 Interfaces .. 79

3.15 Query Explorer ... 82

3.15.1 Services Outline .. 82

3.15.2 Interfaces .. 83

3.16 Recommender .. 86

3.16.1 Services Outline .. 86

3.16.2 Interfaces .. 86

3.17 Analytics and Visualisation Workbench ... 87

3.17.1 Services Outline .. 87

3.17.2 Interfaces .. 89

3.18 BDA Application Catalogue ... 98

3.18.1 Services Outline .. 98

3.18.2 Interfaces .. 99

3.19 Resource Orchestrator .. 106

3.19.1 Services Outline .. 106

D3.3 – Architecture, Core Data and Value Added Services Bundles

Specifications-v2.00

7 / 134

3.19.2 Interfaces .. 107

3.20 Jobs Scheduler and Execution Engine .. 109

3.20.1 Services Outline .. 109

3.20.2 Interfaces .. 109

3.21 Notification Manager .. 113

3.21.1 Services Outline .. 113

3.21.2 Interfaces .. 114

3.22 Usage Analytics ... 119

3.22.1 Services Outline .. 119

3.22.2 Interfaces .. 120

4 Conclusions & Next Steps ... 134

D3.3 – Architecture, Core Data and Value Added Services Bundles

Specifications-v2.00

8 / 134

List of Figures

Figure 1-1: Relation to other ICARUS Work Packages .. 13

Figure 2-1: ICARUS high-level architecture ... 16

List of Tables
Table 3-1: Anonymiser - initiate process .. 24

Table 3-2: Anonymiser - process status .. 25

Table 3-3: Cleanser - initiate process ... 27

Table 3-4: Cleanser - process status ... 28

Table 3-5: Cleanser - obtain log records ... 28

Table 3-6: Mapper - calculate mapping .. 30

Table 3-7: Mapper - save mapping ... 31

Table 3-8: Mapper - save mapping and train model .. 32

Table 3-9: Mapper - initiate mapping process .. 32

Table 3-10: Mapper - process status .. 33

Table 3-11: Encryption Manager -initiate process ... 35

Table 3-12: Encryption Manager - process status .. 36

Table 3-13: Encryption Manager - receive decryption request .. 36

Table 3-14: Decryption Manager - initiate process .. 38

Table 3-15: Decryption Manager - check connection response ... 38

Table 3-16: Decryption Manager -process decryption response ... 39

Table 3-17: Key Pair Administrator - connection request .. 40

Table 3-18: Key Pair Administrator - check data access rights ... 41

Table 3-19: Data Handler - create new data preparation job .. 42

Table 3-20: Data Handler - get data preparation job ... 43

Table 3-21: Data Handler - modify data preparation job ... 44

Table 3-22: Data Handler - create data preparation instructions .. 45

Table 3-23: Data Handler - get data preparation instructions ... 46

Table 3-24: Data Handler - execute data preparation instructions .. 47

Table 3-25: Data Handler - get data preparation status ... 47

Table 3-26: Data Handler - upload data sample ... 48

Table 3-27: Data Handler - upload data ... 48

Table 3-28: Data Handler - download data .. 49

Table 3-29: Data Handler - transfer data .. 49

Table 3-30: Data Handler - add metadata .. 50

Table 3-31: Data Handler - get metadata ... 50

Table 3-32: Data Handler - update metadata ... 51

Table 3-33: Data License and Agreement Manager - request to buy data asset 52

Table 3-34: Data License and Agreement Manager - retrieve request to buy data asset 53

Table 3-35: Data License and Agreement Manager - reject request to buy data asset 54

Table 3-36: Data License and Agreement Manager - accept request to buy data asset 54

Table 3-37: Data License and Agreement Manager - mark buy data asset as paid 55

Table 3-38: Data License and Agreement Manager - create new contract 55

Table 3-39: Data License and Agreement Manager - get contract ... 56

Table 3-40: Data License and Agreement Manager - update contract................................... 57

Table 3-41: Policy Manager - create organisation .. 60

D3.3 – Architecture, Core Data and Value Added Services Bundles

Specifications-v2.00

9 / 134

Table 3-42: Policy Manager - get organisation ... 61

Table 3-43: Policy Manager - get all organisations ... 62

Table 3-44: Policy Manager - update organisation ... 63

Table 3-45: Policy Manager - suspend organisation ... 64

Table 3-46: Policy Manager - invite users to organisation ... 65

Table 3-47: Policy Manager - get users of organisation ... 65

Table 3-48: Policy Manager - create user ... 66

Table 3-49: Policy Manager - update user .. 67

Table 3-50: Policy Manager - get user .. 68

Table 3-51: Policy Manager - suspend user .. 69

Table 3-52: Policy Manager - login ... 70

Table 3-53: Policy Manager - logout ... 70

Table 3-54: Policy Manager - create access policy ... 71

Table 3-55: Policy Manager - modify access policy .. 72

Table 3-56: Policy Manager - delete access policy ... 73

Table 3-57: Policy Manager - authorise access request ... 73

Table 3-58: Policy Manager - access control filter .. 74

Table 3-59: Master Controller - receive instructions .. 76

Table 3-60: Master Controller - receive job status ... 77

Table 3-61: Master Controller - transfer data .. 77

Table 3-62: Master Controller - upload results .. 78

Table 3-63: On Premise Worker and SecureSpace Worker - receive instructions 79

Table 3-64: On Premise Worker and SecureSpace Worker - retrieve job status 80

Table 3-65: On Premise Worker and SecureSpace Worker - receive task status 81

Table 3-66: On Premise Worker and SecureSpace Worker - upload results 81

Table 3-67: On Premise Worker and SecureSpace Worker – receive data 82

Table 3-68: Query Explorer - create and execute query ... 83

Table 3-69: Query Explorer - get query definition .. 84

Table 3-70: Query Explorer - get updated query results .. 84

Table 3-71: Query Explorer - delete query ... 85

Table 3-72: Query Explorer - get query history .. 85

Table 3-73: Recommender - data assets recommendations .. 87

Table 3-74: Analytics and Visualisation Workbench – register algorithm 89

Table 3-75: Analytics and Visualisation Workbench – get, delete algorithm 90

Table 3-76: Analytics and Visualisation Workbench – register application 91

Table 3-77: Analytics and Visualisation Workbench – get applications 92

Table 3-78: Analytics and Visualisation Workbench – get application 94

Table 3-79: Analytics and Visualisation Workbench – delete application 96

Table 3-80: Analytics and Visualisation Workbench – schedule job....................................... 96

Table 3-81: Analytics and Visualisation Workbench – add job ... 97

Table 3-82: Analytics and Visualisation Workbench – get all jobs ... 98

Table 3-83: BDA Application Catalogue - application creation ... 99

Table 3-84: BDA Application Catalogue - get application ... 100

Table 3-85: BDA Application Catalogue - update application ... 102

Table 3-86: BDA Application Catalogue - delete application .. 104

Table 3-87: BDA Application Catalogue - get all applications ... 105

Table 3-88: Resource Orchestrator - deploy secure and private space 107

D3.3 – Architecture, Core Data and Value Added Services Bundles

Specifications-v2.00

10 / 134

Table 3-89: Resource Orchestrator - stop secure and private space 107

Table 3-90: Resource Orchestrator - deploy services on secure and private space 108

Table 3-91: Jobs Scheduler and Execution Engine – get entry ... 110

Table 3-92: Jobs Scheduler and Execution Engine - update entry .. 110

Table 3-93: Jobs Scheduler and Execution Engine - delete entry ... 111

Table 3-94: Jobs Scheduler and Execution Engine - add entry ... 111

Table 3-95: Jobs Scheduler and Execution Engine - get all entries 112

Table 3-96: Notification Manager - list retrieval .. 114

Table 3-97: Notification Manager - single notification retrieval .. 115

Table 3-98: Notification Manager - mark notification as seen ... 116

Table 3-99: Notification Manager - mark all notifications as seen 116

Table 3-100: Notification Manager - delete notification .. 117

Table 3-101: : Notification Manager - new data asset notification 117

Table 3-102: Notification Manager - data asset update notification 117

Table 3-103: Notification Manager - data asset request notification 118

Table 3-104: Notification Manager - data asset draft contract notification 118

Table 3-105: Notification Manager – job status update notification 119

Table 3-106: Usage Analytics - user registration .. 121

Table 3-107: Usage Analytics - user login ... 121

Table 3-108: Usage Analytics - user logout .. 121

Table 3-109: Usage Analytics - asset appeared in search ... 122

Table 3-110: Usage Analytics - asset viewed .. 122

Table 3-111: Usage Analytics - asset starred .. 123

Table 3-112: Usage Analytics - asset un-starred... 123

Table 3-113: Usage Analytics - asset requested ... 124

Table 3-114: Usage Analytics - asset request rejected ... 124

Table 3-115: Usage Analytics - asset purchased ... 124

Table 3-116: Usage Analytics - asset created ... 125

Table 3-117: Usage Analytics - algorithm utilised .. 125

Table 3-118: Usage Analytics - visualisation utilised .. 126

Table 3-119: Usage Analytics - vm started ... 126

Table 3-120: Usage Analytics - vm stopped .. 127

Table 3-121: Usage Analytics - new analytics job ... 127

Table 3-122: Usage Analytics - analytics job success .. 128

Table 3-123: Usage Analytics - analytics job failed ... 128

Table 3-124: Usage Analytics - general assets statistics ... 129

Table 3-125: Usage Analytics - private assets statistics .. 129

Table 3-126: Usage Analytics - user private statistics ... 130

Table 3-127: Usage Analytics - admin private statistics ... 132

D3.3 – Architecture, Core Data and Value Added Services Bundles

Specifications-v2.00

11 / 134

1 Introduction

1.1 Purpose
The scope of the ICARUS deliverable D3.3 “Architecture, Core Data and Value Added Services

Bundles Specifications-v2.00” is to document the efforts carried out within the context of all

tasks of WP3, namely T3.1 “Technology Requirements”, T3.2 “Demonstrator User

Requirements ”, T3.3 “Platform Architecture Design and APIs Specifications”, T3.4 ”Core Data

Service Bundles In-depth Design” and T3.5 “ICARUS Added Value Services Design”.

The deliverable D3.3 is prepared in accordance with the ICARUS Description of Action and will

provide the incremental updates of the documentation of the components of the ICARUS

architecture. The deliverable D3.3 is building upon the outcomes of the deliverable D3.1

“ICARUS Architecture, APIs Specifications and Technical and User Requirements” in which the

first version of the conceptual architecture of the integrated ICARUS platform was delivered,

as well as the deliverable D3.2 “Core Data Service Bundles and Value Added Services Designs”

in which the ICARUS platform’s workflows and the design of the services of the platform were

presented, in order to provide the updated documentation of the functionalities and the

interfaces of the ICARUS architecture components.

In this context, the scope of the current deliverable is:

• To provide the complementary documentation of the architecture of the integrated

ICARUS platform supplementing the information documented in deliverable D3.1.

Following the same approach as with deliverable D3.1, the ICARUS architecture is

presented, describing how each component is involved in a specific functionality of

the platform. It should be noted at this point that in this document there was no

differentiation on the architecture as documented in D3.1, however the provided

documentation is focusing on the positioning of the updated components within the

architecture and the interactions between them are highlighted.

• To document the updated detailed descriptions of the components of the ICARUS

platform, outlining the core functionalities of each component, their interactions with

the rest of the components for the realisation of the ICARUS platform’s workflows and

the interfaces that they offer towards this aim. Furthermore, the technical details of

the interfaces that are offered by each component are documented.

The ICARUS deliverable D3.3 presents the updated documentation on the design and

specifications of the ICARUS platform’s components towards the successful implementation

of the designed workflows. However, all the tasks of WP3 remain active until M32 according

to the ICARUS Description of Action and during this period, the identification and analysis of

additional functional and non-functional requirements, as well as their translation into

D3.3 – Architecture, Core Data and Value Added Services Bundles

Specifications-v2.00

12 / 134

technical requirements, is a living process and the design and specifications of the ICARUS

platform’s architecture and components will be constantly updated and documented in the

upcoming versions of this deliverable.

1.2 Document Approach
The current deliverable follows a systematic and comprehensive approach in order to present

the outcomes and the knowledge extracted from the work performed in all tasks of WP3.

At first, the complementary documentation of the ICARUS platform architecture is presented.

In this documentation, the positioning of each component of the architecture is highlighted,

the platform functionalities that each component is involved and the interactions between

the components for the realisation of these functionalities, as it is also depicted in the

designed ICARUS workflows, is presented.

Following the documentation of the ICARUS platform architecture, the updated

documentation of the components of the platform is presented. For each component, the

core functionalities that it is offering are highlighted. Furthermore, their involvement in the

ICARUS platform services is presented and the interactions of each component with the rest

of the components of the platform for each designed ICARUS platform workflow is

documented. Finally, for each component, the technical details of the interfaces that are

facilitating the interactions of the component with the other components are documented.

1.3 Relation to other ICARUS Results
The ICARUS Deliverable D3.3 is released in the scope of the WP3 “ICARUS Platform Design”

activities and reports the efforts undertaken within the context of T3.1 “Technology

Requirements”, T3.2 “Demonstrator User Requirements ”, T3.3 “Platform Architecture Design

and APIs Specifications”, T3.4 ”Core Data Service Bundles In-depth Design” and T3.5 “ICARUS

Added Value Services Design” of WP3.

As depicted in Error! Reference source not found., the initial outcomes of T3.1 and T3.2

provided the input to T3.3 in order to formulate the initial version of the integrated ICARUS

platform and the outcomes of T3.3 were provided as input to both T3.4 and T3.5. The

outcomes of the T3.4 and T3.5 also provided input to T3.3 and triggered the necessary

updates in the design and APIs specifications of the components of the ICARUS platform.

As Tasks T3.1 and T3.2 will be constantly updated as the project evolves in order to follow the

project’s advancements, the updated outcomes will be also provided as input to T3.3, T3.4

and T3.5 in order to formulate the updated ICARUS platform architecture, as well as the

D3.3 – Architecture, Core Data and Value Added Services Bundles

Specifications-v2.00

13 / 134

updated designs of the Core Data Service Bundles and the Added Value Services that will be

documented in the upcoming versions of the WP3 deliverable series.

Figure 1-1: Relation to other ICARUS Work Packages

D3.3 builds on the outcomes of D3.1 and D3.2, updating them as necessary to reflect the

latest project advancements across all Work Packages, taking into consideration the ICARUS

platform development progress and feedback from WP4 “Platform Agile Development and

Deployment”.

Furthermore, D3.3 and WP3 are directly related to the outcomes of: (a) WP1 “ICARUS Data

Value Chain Elaboration” with regard to the ICARUS methodology, the ICARUS Minimum

Viable Product (MVP), and (b) WP2 “ICARUS Big Data Framework Consolidation” with regard

to the data collection, data provenance, data safeguarding, data curation, data linking, data

analytics and data sharing methods that are applicable to ICARUS. D3.3 provides the updated

design and specifications of the services of the ICARUS platform, as well as of the components

involved in them, to WP4 “Platform Agile Development and Deployment” that delivers the

implementation of these services following the approach formulated in the WP3 activities.

Finally, the feedback that will be collected from the continuous evaluation of the platform as

a result of the WP5 (ICARUS Data Value Chain Demonstration) activities is constantly fed in

WP3 and will drive the updates and adjustments in both the design and specifications of the

services of the platform, as well as the overall integrated ICARUS platform and its components

in the future documentation of the WP3 results (namely, in D3.4 and D3.5).

1.4 Structure
The structure of the document is as follows:

D3.3 – Architecture, Core Data and Value Added Services Bundles

Specifications-v2.00

14 / 134

• In Section 2, the complementary documentation of the architecture of the

integrated ICARUS platform is presented. Within this context, each component of

the architecture is presented, focusing on the positioning of the component within

the architecture, the platform functionalities that the component is involved in

and the interactions of the component with the rest of the components for the

implementation of these functionalities.

• In Section 3, the updated documentation of the design and specifications of the

ICARUS platform’s components is presented. In this section, for each component

an overview containing the core functionalities of the component is presented.

Furthermore, the involvement of the component in the ICARUS services and the

designed ICARUS platform’s workflows is outlined focusing on the interactions

with the rest of the components and the interfaces offered by the component.

Finally, the technical details of the interfaces provided by each component is

documented.

• Section 4 concludes the deliverable, outlining the main findings of the deliverable

which will guide the development efforts of the consortium.

D3.3 – Architecture, Core Data and Value Added Services Bundles

Specifications-v2.00

15 / 134

2 ICARUS Platform Architecture

Within the context of deliverable D3.1, the high-level architecture of the ICARUS platform has

been presented as the outcome of the thorough analysis of the technical requirements

documented in section 4 that were later translated into technological, beyond the state of

the art, software modules whose implementation is performed within the context of WP4.

The ICARUS architecture is a modular architecture that was designed with a high level of

flexibility and adaptability. The main principle of the ICARUS architecture is to support the

smooth and effective integration of all the designed software modules in which multiple

technologies and tools are utilised towards the realisation of the designed workflows that will

enable the aim of the ICARUS to deliver a novel big data platform for the aviation data value

chain. The key aspects of the ICARUS architecture is the functional decomposition and the

strict separation of concerns, as well as the dependencies identification and the design of a

complete data flow. Within this architecture, each component is designed with the aim of

delivering specific business services with a clear context, scope and set of features. The

complete data flow is described in the form of interactions between the designed

components that will enable the effective implementation of the designed workflows.

Furthermore, the ICARUS architecture enables the interoperability of the various components

that facilitate the execution of big data analytics and sharing of data through secure,

transparent and advanced functionalities and features. To ensure this, all components of the

ICARUS architecture provide well-defined interfaces to enable the seamless integration and

operation of the integrated platform.

The presented high-level architecture of the platform depicts the entire lifecycle of the

ICARUS platform that spans from the data preparation and data collection, the data

exploration, the asset brokerage and data recommendation, to the data analysis and

visualization, supplemented with advanced data security on all steps of the lifecycle.

Furthermore, the lifecycle of the platform is complemented by added value steps such as

notifications and usage analytics.

This high-level architecture had driven the implementation and release of the Alpha Version

of the ICARUS platform, that was presented in D4.1, as well as the Beta version of the platform

that is presented in D4.2. Figure 2-1 illustrates the high-level architecture of the ICARUS

platform, along with the relevant information for the technologies and tools exploited by each

component. The high-level architecture remained unaffected in terms of design,

functionalities and interactions, as no additional requirements were identified requiring the

introduction of any adjustment or refinement.

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

16 / 134

Figure 2-1: ICARUS high-level architecture

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

17 / 134

The ICARUS architecture is conceptually divided in three main tiers, the On Premise

Environment, the Core ICARUS platform and the Secure and Private Space. Each tier is

undertaking a set of functionalities of the ICARUS platform depending on the execution

environment and context.

The On Premise Environment is composed by multiple components running on the data

provider’s environment with the main purpose to prepare the data provider’s private or

confidential datasets in order to be uploaded in the ICARUS platform. To facilitate the data

preparation, the Master / Worker paradigm is utilised. The OnPremise Worker running on

the On Premise Environment provides the interface to the Master Controller running on the

Core ICARUS platform in order to receive the set of instructions for the data preparation or

the local download of a dataset and its decryption. These instructions are interpreted and

translated into a set of tasks that the OnPremise Worker is responsible to execute locally

utilising the set of components running on the On Premise Environment for each specific task.

The Cleanser component provides the data cleansing functionalities of the platform according

to the instructions provided by the OnPremise Worker through its relative interface. Based

on the received instructions, the Cleanser performs a set of techniques for simple and more

advanced cleansing operations over datasets that contain erroneous or “dirty” data by

detecting or correcting corrupted, incomplete, incorrect and inaccurate records from

datasets with a variety of rules and constraints. The Mapper component is responsible for the

configuration and execution of the relative mapping instructions in collaboration with the

OnPremise Worker. As the Mapper practically undertakes the harmonisation process of the

dataset, upon receiving the mapping instructions, it performs the mapping of the fields of the

dataset to the ICARUS common aviation model in a semi-automatic way, ensuring that the

dataset will conform to the ICARUS schema when uploaded to the platform. The Anonymiser

component is providing the data anonymisation functionalities which include filtering or

hiding the private, sensitive or personal data that cannot be disclosed outside the data

provider’s premises, corporate network or personal filesystem by applying a set of

anonymisation techniques in order to deal with privacy issues and the protection of sensitive

information. As with the rest of the components of the On Premise Environment, the

Anonymiser is providing the interface for the receival of the anonymisation instructions from

the OnPremise Worker. The Wallet Manager is facilitating the operation of the Data License

and Agreement Manager by providing a set of functionalities such as the generation and

management of the blockchain account of the user and the interaction with the blockchain

for the smart contract signature process. The Encryption Manager is undertaking all essential

encryption processes with regard to encryption of the data provider’s dataset. The Encryption

Manager receives the relevant encryption instructions from the OnPremise Worker via the

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

18 / 134

provided interface and performs the encryption of the data provider’s dataset with the

encryption cipher mechanism that it provides. Furthermore, the Encryption Manager

facilitates the dataset sharing, upon the agreement of the data provider and the data

consumer, with the generation of the appropriate decryption keys and the secure

transmission of the corresponding decryption key from the data provider to the data

consumer by interacting with the Decryption Manager and the Key-Pair Administrator. The

Decryption Manager is enabling the decryption of the dataset on the On Premise

Environment when an encrypted dataset is downloaded locally as per the instructions

provided by the OnPremise Worker, provided that a valid smart contract exists permitting the

downloading of the specific dataset locally. The Decryption Manager provides the

mechanisms to verify the identity of the data consumer via a certificate or public key, to

request for the decryption key from the data provider and the decryption mechanism in order

to temporarily reproduce the encryption key in order to decrypt the dataset.

The Core ICARUS platform is composed by multiple interconnected components running on

the ICARUS infrastructure. The Master Controller is responsible for compiling and providing

a set of instructions to be executed by the OnPremise Worker and the SecureSpace Worker

following the Master / Worker paradigm as explained also above. The Master Controller is

providing the interface that is utilised from the rest of the components of the Core ICARUS

platform in order to submit the set of instructions that will be sent to the corresponding

workers running on the On Premise Environment and the Secure and Private Space in order

to be executed.

The Data Handler undertakes the role of the data gateway in the ICARUS architecture

enabling the functionalities related to the availability of the data assets and their respective

metadata in the platform. Through the interfaces offered by the Data Handler and the

interactions with the relative workers through the Master Controller, it enables the uploading

of the produced data provider’s private or confidential dataset or the data generated as a

result of a data analysis, as well as the downloading of datasets from the platform to the end

user’s On Premise Environment and/or to a Secure and Private Space. Furthermore, the Data

Handler is handling the whole lifecycle management of the metadata of the data assets, while

also providing a layer above the ICARUS storage, providing services and interfaces for storing

or retrieving information from it that are exploited by the rest of the components of the Core

ICARUS platform. The Mapper instance running on the Core ICARUS platform is directly

interacting with the Data Handler through a set of interfaces with a dual purpose: (a) to

perform the harmonisation process of the datasets originating from open data sources, and

(b) to manage the semi-automated mapping of a dataset that is checked in in the ICARUS

platform, to the ICARUS common aviation data model. The Data License and Agreement

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

19 / 134

Manager is responsible for the asset brokerage functionalities of the platform, providing the

processes and interfaces that enable the preparation, drafting, signing and activation, as well

as the enforcement of smart contracts that represent the data sharing agreements between

platform users. The Key Pair Administrator is performing the signalling operations for the

exchange of the decryption key between the data provider and the data consumer. It acts as

the mediator between the Decryption Manager residing at the data consumer side and the

Encryption Manager residing at the data provider side in order to establish a secure SSL-

enabled connection for the exchange of the decryption key. The Policy Manager is

implementing the sophisticated access control mechanism of the ICARUS platform that is

based on the ABAC model and XACML standard. The Policy Manager performs the user

management process, the complete access policy lifecycle management by interacting with

the Data Handler through a set of interfaces and the access policy enforcement that controls

and regulates the access of any resource via the dedicated interfaces, taking into account

whether there is an active data contract by interacting with the Data License and Agreement

Manager. The ICARUS Storage and Indexing component is providing the storage capabilities

of the platform facilitating the data access and storage operations with two storage solutions,

namely MongoDB and PostgreSQL, as well as the indexing capabilities over multiple complex

datasets with the flexible and efficient search engine as provided by Solr. The Query Explorer

encapsulates the intuitive environment that facilitates a data query definition with enhanced

functionalities such as dynamic field selection and filter definition. The Query Explorer offers

advanced dataset exploration and discoverability functionalities by interacting with the Solr

search engine, while also interacting with the Policy Manager through the respective interface

in order to ensure that the appropriate access policy filter is applied on the formulated query.

Finally, it interacts with the Recommender component in order to retrieve and display the

proper data recommendation to the users. The Recommender is providing the enhanced

recommendation functionalities that enable the dataset exploration and discoverability. As

such, the Recommender interacts with the Data Handler in order to obtain the required

information from the ICARUS Storage and with the Query Explorer in order to provide the

recommendations and suggestions for additional related datasets that can be explored or

utilised during the search and query process.

The Analytics and Visualisation Workbench is providing the environment: (a) where the users

of the platform are able to design, execute and monitor the data analytics workflows and (b)

where the visualisation and dashboards are displayed. The Analytics and Visualisation

Workbench is enabling the design of an ICARUS application in which the user is able to: (a)

select an algorithm from the extended list of supported algorithms and set the corresponding

parameters according to his/her needs, (b) select the datasets for the analysis from the list of

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

20 / 134

datasets the user owns or has legitimate access, and (c) select the visualisations from the

variety of visualisations and dashboards that the platform is offering, and store it in the BDA

Application Catalogue. While the design of the ICARUS application is performed in the

Analytics and Visualisation Workbench, the execution of this application and the underlying

data analysis is performed within the Secure and Private Space. To achieve this, the Analytics

and Visualisation Workbench is interacting through the corresponding interfaces with the

Resource Orchestrator for the provisioning of the Secure and Private Space, the Data Handler

for the transferring of the datasets to the Secure and Private Space and the produced results

from the Secure and Private Space to the ICARUS Storage with the help of the Master

Controller, and finally with the Job Scheduler and Execution Engine for the actually execution

of the designed application. The BDA Application Catalogue implements a repository of the

ICARUS applications created by the users of the platform. As such, the ICARUS applications

can be stored, retrieved, modified and loaded in the Analytics and Visualisation Workbench

by the users at any time. The purpose of the BDA Application Catalogue is to enable the reuse

of the designed data analytics workflows from the users, as well as the sharing of these

workflows among the users through a defined license in order to empower the analytical

capabilities of the platform. For this purpose, the Analytics and Visualisation Workbench is

interacting with BDA Application Catalogue by a set of interfaces that are provided by the

latter.

In addition to the aforementioned components, the ICARUS platform is supported by

supplementary components with the aim of providing added-value services to the users of

the platform. The Notifications Manager is responsible for providing the updated information

to the users with regards to the datasets or the scheduled analytics jobs following the publish-

subscribe pattern. To achieve this, the components of the platform produce various events in

a message queue provided by the Notifications Manager and the Notifications Manager

provides the relevant notifications to the users. The Usage Analytics component is

responsible for providing the tools that collect, analyse and visualise the usage of the various

services and assets of the platform in order to extract useful insights and statistics. Following

also the publish-subscribe pattern, a message queue is provided by the Usage Analytics and

the corresponding components of the platform is pushing new events in the queue based on

the observed activities. The Usage Analytics is providing meaningful platform utilization

insights related to the usage of data and service assets, the usage statistics of the platform

and the users’ private space to both the users and the platform administrator.

The Resource Orchestrator is enabling the provisioning and management of the Secure and

Private Spaces. To achieve this, the Resource Orchestrator is able to connect to the virtualised

infrastructure in order to perform monitoring and management of the available resources, to

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

21 / 134

allocate and release the resources in the corresponding virtual machines, as well as deploy

and manage the applications and services running on the virtual machines. The Resource

Orchestrator is interacting with the Analytics and Visualisations Workbench via the interfaces

it provides for receiving the deployment requests for the provisioning of the Secure and

Private Space of a user, as well as for the deployment of the services that are operating in the

Secure and Private Space. Additionally, the Resource Orchestrator is handling the requests

from the Analytics and Visualisations Workbench for the stoppage / shutdown of the Secure

and Private Space of a user.

As such, the Secure and Private Space is realised in the form of dedicated virtual machines

that are spawned on demand so that each user is able to perform analysis in an isolated and

secure environment. The Secure and Private Space contains a set of interconnected

components that constitute the advanced analytics execution environment of the ICARUS

platform. The SecureSpace Worker running on the Secure and Private Space is providing the

interface for receiving a set of instructions from the Master Controller related to the

transferring of the required datasets from the ICARUS Storage to the Secure and Private Space

for the execution of an ICARUS application, as well as the transferring of the encrypted results

of this execution back the Core ICARUS platform for storage and visualisation purposes. The

SecureSpace Worker undertakes the responsibility of executing the received instructions with

the use of the set of components that are running on the Secure and Private Space. The

Decryption Manager running on the Secure and Private Space undertakes the responsibility

to decrypt the datasets in order to be used in the data analysis or in the visualisation process.

The Decryption Manager provides the interface to the SecureSpace Worker and the Job

Scheduler and Execution Engine in order to receive the decryption instructions. As described

above, the Decryption Manager performs the data consumer’s identity verification, the

request for the decryption key exchange and eventually the decryption of the encrypted

dataset via the dedicated decryption mechanism on the Secure and Private Space. Once an

analysis is triggered by the Analytics and Visualisation Workbench, the Job Scheduler and

Execution Engine is responsible for the initiation and monitoring of the corresponding job and

for providing the relevant status, as well as the analysis results, in the Analytics and

Visualisation Workbench in order to be displayed to the users. The Jobs Scheduler and

Execution Engine is interacting with the Analytics and Visualisation Workbench in order to

receive the request for the execution of an ICARUS application and the Execution Cluster for

the actual execution of the application. Additionally, it interacts with the Decryption Manager

for decryption of the dataset that will be used and with the Encryption Manager for the

encryption of the produced results.

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

22 / 134

As it is obvious from the description of the ICARUS architecture, for the realisation of the

various workflows of the ICARUS platform, multiple interactions exist between the

components of the platform in all three tiers. The description above briefly presented these

interactions highlighting the need of effective exchange of information between the

components. In the following section, the functionalities of each component, as well its

interactions with the rest of the components towards the implementation of the ICARUS

platform features is described in detail along with the technical details of the provided

interfaces that facilitate the successful exchange of information.

It should be noted also that experimentation is currently performed on testbeds that are

setup with the various available technologies, including the HDFS distributed filesystem, for

the efficient data transfer between the Secure and Private Space and Core ICARUS platform,

in order to opt for the best suitable option. The outcomes of this experimentation for the

Secure and Private Space will further enrich the technology stack of the ICARUS platform and

the changes that will be introduced will be documented in the upcoming deliverable, namely

D3.4.

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

23 / 134

3 ICARUS Components Designs

3.1 Overview
The ICARUS architecture is designed in a modular manner and is composed of a set of key

components that were designed each one with a distinct role and scope. To ensure that the

ICARUS stakeholders’ needs are addressed, the elicited technical requirements that express

these needs were translated into concrete platform features that were grouped under the

modular components of the platform.

In order to enable the efficient and effective design of the ICARUS services that will facilitate

the implementation of the ICARUS platform offerings and features, the outcomes of WP1 and

WP2, and the knowledge extracted from the work performed in WP3 were further analysed.

As a result, 29 workflows were designed in total, as presented in deliverable D3.2, that depict

the interactions of the users with the ICARUS platform, as well as the interactions of the

various components of the platform. The analysis of these workflows produced the design

specifications of 18 service bundles, that were also documented in deliverable D3.2, each one

fulfilling a specific set of responsibilities and functionalities within the ICARUS platform

making sure that all aspired ICARUS platform offerings and features are covered.

Each component of the ICARUS architecture is involved in at least one of these services,

providing the set of functionalities that is required for the implementation of the service.

From the analysis of the design specifications of the ICARUS services, as well as the analysis

of the designed workflows, it is obvious that for the realisation of these workflows, the various

services, as well as the underlying components that are involved in these services, are

interacting towards the exchange of information through well-defined interfaces.

In the following subsections, the interactions of each component with the rest of the

components of the ICARUS platform is presented, highlighting the requirements for the

effective exchange of information and the provided interfaces that are offered in order to

address these requirements. Furthermore, for each component the technical details of the

interfaces that each component offers are documented.

3.2 Anonymiser

3.2.1 Services Outline
The Anonymiser component is responsible for providing a privacy and anonymisation toolset

that enables the anonymisation functionalities of the ICARUS platform. In detail, the

Anonymiser handles the various privacy concerns and limitations of the data provider’s

dataset, as well as the protection of commercially sensitive, private or personal information

that is incorporated in this dataset.

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

24 / 134

As described in deliverable D3.2, the Anonymiser component is involved in the Data

Anonymisation service that is included in the Data Preparation workflow and is implementing

the data anonymisation process, a generic process that is highly customisable based on the

data provider’s needs. Besides the dataset that the anonymisation process will be applied on,

the data provider is responsible for providing the required configuration to the Anonymiser

in order for the Anonymiser to customise the data anonymisation process based on received

configuration. This configuration is provided in the form of anonymisation rules that are

formulated based on his/her expertise over the content of the dataset, in which the

anonymisation models, as well as the anonymisation technique and the anonymisation level

from the selected model, are set, either at a field-level or at a dataset-level. The Anonymiser

is responsible for the interpretation of these rules and the execution of the customised, based

on these rules, data anonymisation process.

The Anonymiser component resides on the On Premise Environment and interacts only with

the OnPremise Worker in order to receive the instructions containing the dataset’s access

information and the anonymisation rules. These instructions are formulated as one of the

steps of the Data Preparation workflow and are initially provided to the Master Controller

before they are dispatched to the Anonymiser through the OnPremise Worker. Hence, the

Anonymiser component provides the interface that receives the formulated instructions from

the OnPremise Worker. Once the instructions are received, the Anonymiser initiates the

customised data anonymisation process over the selected dataset and an acknowledgement

is provided to the OnPremise Worker. During this process execution, the OnPremise Worker

can retrieve the current status of the ongoing data anonymisation process execution through

a dedicated endpoint that is provided by the Anonymiser. Once the execution is finalised, the

produced anonymised dataset is saved locally on the On Premise Environment and the

Anonymiser informs the OnPremise Worker for the completion of the process via the

respective endpoint that is provided by the OnPremise Worker.

It should be mentioned that the upcoming versions of the Anonymiser will include the re-

identification risk assessment, as described in the ICARUS Anonymisation method of

deliverable D2.3, and the endpoint that will provide the results of the risk assessment in order

to obtained by the data provider.

The details of the interfaces described above are presented in the following sub-section.

3.2.2 Interfaces
In the following tables the interfaces of the Anonymiser are defined.

Table 3-1: Anonymiser - initiate process

ICARUS Technical Interface

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

25 / 134

Technical Interface ID AN01

Endpoint Name Initiate data anonymisation process

Endpoint Description Receives the data anonymisation instructions by the OnPremise Worker as set by
the data provider and initiates the customised data anonymisation process based
on these instructions

Component Anonymiser

Endpoint URL https://hostname[:port]/v1/anonymiser/instructions

HTTP method POST

Request Parameters N/A

Request Body {

 “processId”: “string”,

 “filePath”: “string”,

 “type“: “anonymisation”

 “rules”: [

 {"original_field": “string”, "icarus_field": “string”, "technique":
 “string”, "method": “string”, "level": “string”}

]

}

Response Body • 200 OK
• 400 Bad Request
• 404 Not Found

Table 3-2: Anonymiser - process status

ICARUS Technical Interface

Technical Interface ID AN02

Endpoint Name Ongoing data anonymisation process status

Endpoint Description Receives the relevant anonymisation process id and returns the current
execution status of the process.

Component Anonymiser

Endpoint URL https://hostname[:port]/v1/anonymiser/process-status/{processId}

HTTP method GET

Request Parameters • processId: The id of the process.

Request Body None

Response Body {

 “processId”: “string”,

 "currentStatus": “NOTSTARTED | INPROGRESS | COMPLETED | FAILED”

}

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

26 / 134

3.3 Cleanser

3.3.1 Services Outline
The Cleanser component is undertaking the responsibility of providing the data cleansing

functionalities of the ICARUS platform. Within this context, the Cleanser provides the

necessary data cleansing mechanisms that correct, clean and complete the provided dataset

towards the maximization of the accuracy, completeness, correctness and usability of the

dataset and the minimization of their data quality, reliability and integrity issues.

As described in deliverable D3.2, the Cleanser component is involved in the Data Cleansing

service that is part of the Data Preparation workflow. In detail, the Cleanser component is

responsible for the implementation of the data cleansing process that is provided by the Data

Cleansing service. The data cleansing process incorporates a set of sequentially executed

steps that include: (a) the data preliminary analysis, (b) the data validation, (c) the data

cleansing, (d) the data completion and (e) the cleansing assessment sub-processes. All of

these sub-processes are executed internally by the Cleanser component and their execution

is based on a set of data validation, data cleansing and data completion rules that are defined

by the data provider according to his/her needs. The rules are defined on a field-level that

contain the list of constraints for a specific field and the corrective or removal action, in terms

of cleansing or missing value handling, that will be performed in the case of a conformance

error. In this way, the data cleansing process is tailored based on the nature of the dataset,

as well as the requirements that are set by the data provider. The Cleanser is responsible to

process these rules and apply them on top of the selected dataset in order to produce an

accurate, complete and correct dataset that will be effectively used in high-quality data

analysis.

The Cleanser component is one of the components that are residing on the On Premise

Environment and undertakes the task of executing the instructions related to data cleansing

as provided by the OnPremise Worker. Hence, the Cleanser component interacts only with

the OnPremise Worker via a dedicated endpoint in order to receive these instructions that

contain the dataset’s access information and the corresponding data validation, data

cleansing and data completion rules. These rules are defined within the context of the Data

Preparation workflow and are provided to Cleanser component directly through the

OnPremise Worker that initially collects them from the Master Controller running on the Core

ICARUS platform. Once the Cleanser receives the instructions, it initiates the data cleansing

process and the OnPremise Worker can obtain the current execution status of the process via

a dedicated endpoint provided by the Cleanser. Finally, once the Cleanser has finished the

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

27 / 134

data cleansing process, the cleansed dataset is saved locally on the On Premise Environment

and the Cleanser informs the OnPremise Worker for the process completion via the respective

endpoint that is provided by the OnPremise Worker. Additionally, the Cleanser provides an

interface from which the OnPremise Worker can obtain the log records that contain all the

identified errors, the corrective or removal actions taken during the execution of the cleansing

workflow for a specific job.

The details of the interfaces described above are presented in the following sub-section.

3.3.2 Interfaces
In the following tables the interfaces of the Cleanser are defined.

Table 3-3: Cleanser - initiate process

ICARUS Technical Interface

Technical Interface ID CL01

Endpoint Name Initiate data cleansing process

Endpoint Description Receives the data cleansing instructions by the OnPremise Worker as configured
by the data provider and the path of the dataset and initiates the data cleansing
process by applying these rules on the selected dataset

Component Cleanser

Endpoint URL https://hostname[:port]/v1/cleanser/instructions

HTTP method POST

Request Parameters N/A

Request Body {

 “processId”: “string”,

 “filePath”: “string”,

 “type“: “cleaning”,

 “rules”: {

 "cleaning": [{"original_field": “string”, "icarus_field": “string”,
 "rule":”string”,"title":”string”,"arguments":”string”}],

 "validation": [{"original_field": “string”, "icarus_field": “string”,
 "rule":”string”,"title":”string”,"arguments":”string”}],

 "missing": [{"original_field": “string”, "icarus_field": “string”,
 "rule":”string”,"title":”string”,"arguments":”string”}]

 }

}

Response Body • 200 OK
• 400 Bad Request
• 404 Not Found

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

28 / 134

Table 3-4: Cleanser - process status

ICARUS Technical Interface

Technical Interface ID CL02

Endpoint Name Ongoing data cleansing process status

Endpoint Description Receives the relevant cleansing process id and returns the current execution
status of the process.

Component Cleanser

Endpoint URL https://hostname[:port]/v1/cleanser/process-status/{processId}

HTTP method GET

Request Parameters • processId: The id of the process.

Request Body None

Response Body {

 “processId”: “string”,

 "currentStatus": “NOTSTARTED | INPROGRESS | COMPLETED | FAILED”

}

Table 3-5: Cleanser - obtain log records

ICARUS Technical Interface

Technical Interface ID CL03

Endpoint Name Obtain the log records of a completed cleansing process

Endpoint Description Receives the relevant cleansing process id and return the log record of the
completed cleansing process.

Component Cleanser

Endpoint URL https://hostname[:port]/v1/cleanser/retrieve-records/{processId}

HTTP method GET

Request Parameters • processId: The id of the process.

Request Body None

Response Body {

 “processId”: “string”,

 "records": [{"Violated Constraint": “string”, "Correction
 Action": “string”, "Attribute": “string”,
 "original_field": “string”, "icarus_field": “string”}]

}

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

29 / 134

3.4 Mapper

3.4.1 Services Outline
As documented in deliverables D3.1 and D3.2, the Mapper is the component that undertakes

all tasks pertaining to the mapping of the dataset’s fields to the ICARUS common data model,

both for datasets owned and provided by ICARUS stakeholders and for the ones coming from

open data sources. The identification of such links and the generation of mappings between

each dataset’s schema and the ICARUS model is imperative to enable the provision of

numerous ICARUS functionalities. Specifically, as already explained in the aforementioned

deliverables, various ICARUS components and services (including dataset search and

exploration, data integration and analysis, etc.) rely on the fact that datasets in ICARUS

conform to a unique data model. Therefore, the Mapper is an important part of the Data

Preparation workflow and each of its functionalities corresponds to one of the services that

compose the “Data Mapping service”, as presented in deliverable D3.2.

The Mapper has a dual presence in the ICARUS architecture, in the sense that some

functionalities are provided inside the core ICARUS platform, whereas some limited

functionality is implemented in the context of the On Premise Environment, the latter being

similar to the way other components participating in the Data Preparation workflow operate,

such as the Anonymiser and the Cleanser that were described in the previous sections of the

current deliverable. This differentiating point constitutes a design decision partially explained

by the fact that the mapping process needs to be executed also for the open data being

imported in the platform - where no On Premise Environment is available. Moreover, it

increases efficiency, as the need to transfer the latest common ICARUS data model locally in

order to perform the mapping is eliminated.

The part of the Mapper that resides in the core platform interacts with the Data Handler in

order to perform the following tasks: (1) generate the mapping for a dataset, (2) store an

uncompleted mapping, which is required when a user wants to save mapping instructions

either created exclusively by the Mapper or edited manually without being certain that these

correspond to the final mapping, i.e. without validating that the mapping should be applied

on the underlying data, (3) retrieve a mapping (marked as completed or not), (4) allow the

user to edit an uncompleted mapping and (5) store a completed mapping, i.e. by validating

that the included mapping instructions can be applied on the dataset by the Mapper services

that reside in the On Premise Environment. It should be mentioned that the ICARUS Mapper

is a self-learning component, as it leverages every new validated (completed) mapping in

order to re-train and enhance the underlying mapping algorithm. This means that when task

(5) in the above list is performed, the service being invoked also invokes the algorithm training

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

30 / 134

service. The creation of the mapping instructions constitutes a step of the Data Preparation

workflow, but in order for the instructions to be executed, all data preparation instructions

need to be provided, as parts of a data check-in job, which will be discussed in Section 3.9.

Once all instructions are in place, the Data Handler, the Master Controller and the On Premise

Worker interact (through services described in the corresponding sections), until the

complete set of instructions has been made available to the Worker. Then, the Worker will

interact with the On Premise part of the Mapper in order to execute the mapping instructions

and ensure that the dataset will conform to the ICARUS schema when uploaded to the

platform.

The interfaces that have been implemented to provide the above functionalities are

documented in the following sub-section.

It should be mentioned that future versions of the Mapper will include the data model

lifecycle management and evolution services required to ensure that the ICARUS data model

can adapt to the evolving needs of the aviation industry and that all relevant/interesting

datasets in this context can be handled by the platform.

3.4.2 Interfaces
The Mapper interfaces are documented in the following tables.

Table 3-6: Mapper - calculate mapping

ICARUS Technical Interface

Technical Interface ID MAP01

Endpoint Name Calculate Mapping

Endpoint Description Used for calculating the mapping between a dataset uploaded by a user and the
ICARUS data model

Component Mapper

Endpoint URL https://icarus_platform[:port]/api/v1/mapper/calculate-mapping

HTTP method GET

Request Parameters • dcid: The id of the data checkin job

Request Body N/A

Response Body {
 "icarus_fields": [
 {
 "value": "aircraftModel",
 "definition": " An aircraft model represents a generic specification that
describes the characteristics of a specific type of aircraft that has been
manufactured."
 },
 {
 "value": "ICAOAircraftType",

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

31 / 134

 "definition": " An aircraft type designator is a two-, three- or four-character
alphanumeric code designating every aircraft type (and some sub-types) that may
appear in flight planning as defined by the International Civil Aviation
Organization."
 },

],
 "mapping_records": [
 {
 "field_type": "string",
 "icarus_field": "IATAAircraftType",
 "index": 0,
 "original_field": "ACT3"
 },
 {
 "field_type": "datetime",
 "icarus_field": "actualDepartureTime",
 "index": 1,
 "original_field": "ACT5"
 }
]
}

Table 3-7: Mapper - save mapping

ICARUS Technical Interface

Technical Interface ID MAP02

Endpoint Name Save Mapping

Endpoint Description Used for storing an unfinished mapping in the database (i.e. when the user saves
a mapping without it being complete)

Component Mapper

Endpoint URL https://icarus_platform[:port]/api/v1/mapper/save-model

HTTP method POST

Request Parameters N/A

Request Body {
 "mapping": [
 {
 "field_type": "string",
 "icarus_field": "IATAAircraftType",
 "index": 0,
 "original_field": "ACT3"
 },
 {
 "field_type": "datetime",
 "icarus_field": "actualDepartureGateCloseTime",
 "index": 1,
 "original_field": "ACT5"
 }
],
 "dcid": "1"

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

32 / 134

}

Response Body “Success” when the mapping was stored successfully or an error message
indicating the problem otherwise

Table 3-8: Mapper - save mapping and train model

ICARUS Technical Interface

Technical Interface ID MAP03

Endpoint Name Save Mapping and Train Model

Endpoint Description Used for storing the mapping in the database when it is completed and for
training the ICARUS data model with the newly created mapping

Component Mapper

Endpoint URL https://icarus_platform[:port]/api/v1/mapper/train-and-save-model

HTTP method POST

Request Parameters N/A

Request Body {
 "mapping": [
 {
 "field_type": "string",
 "icarus_field": "IATAAircraftType",
 "index": 0,
 "original_field": "ACT3"
 },
 {
 "field_type": "datetime",
 "icarus_field": "actualDepartureGateCloseTime",
 "index": 1,
 "original_field": "ACT5"
 }
],
 "dcid": "1"
}

Response Body “Success” when the mapping was stored successfully or an error message
indicating the problem otherwise

Table 3-9: Mapper - initiate mapping process

ICARUS Technical Interface

Technical Interface ID MAP04

Endpoint Name Initiate data mapping process

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

33 / 134

Endpoint Description Receives the mapping instructions by the OnPremise Worker as configured by the
data provider and the path of the dataset and applies them on the selected
dataset

Component Mapper

Endpoint URL https://hostname[:port]/v1/mapper/instructions

HTTP method POST

Request Parameters N/A

Request Body {
 "processId": "string",
 "filePath": "string",
 "type": "mapping",
 " rules": [{
 "icarus_field": "IATAAircraftType",
 "index": 0,
 "original_field": "ACT3"
 }, {
 "icarus_field": "actualDepartureGateCloseTime",
 "index": 1,
 "original_field": "ACT5"
 }]
}

Response Body • 200 OK
• 400 Bad Request
• 404 Not Found

Table 3-10: Mapper - process status

ICARUS Technical Interface

Technical Interface ID MAP05

Endpoint Name Ongoing data mapping process status

Endpoint Description Receives the relevant mapping process id and returns the current execution
status of the process.

Component Mapper

Endpoint URL https://hostname[:port]/v1/mapper/process-status/{processId}

HTTP method GET

Request Parameters • processId: The id of the process.

Request Body None

Response Body {
 “processId”: “string”,
 "currentStatus": “NOTSTARTED | INPROGRESS | COMPLETED | FAILED”
}

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

34 / 134

3.5 Wallet Manager

3.5.1 Services Outline
The Wallet Manager is a supplementary component that handles all blockchain-related

operations in the context of the On Premise Environment. It interacts only with the Blockchain

nodes in order to query the status of a smart contract. This interaction is performed via

Remote Procedure Calls (RPC); hence no interfaces are foreseen.

3.5.2 Interfaces
The Wallet Manager does not offer any interfaces.

3.6 Encryption Manager

3.6.1 Services Outline
The Encryption Manager undertakes the responsibility of ensuring the security and integrity

of the data assets with the appropriate encryption mechanism and facilitating the secure and

controlled sharing of encrypted datasets between the data provider and the data consumer.

The Encryption Manager is involved in the Data Encryption and Data Decryption service, as

described in the deliverable D3.2, along with the Decryption Manager and the Key Pair

Administrator. In detail, the Encryption Manager component is responsible for: (a) providing

the column-based encryption mechanism that utilises a symmetric key encryption for the

security and integrity of the data assets, (b) supporting the SSL-enable connection

establishment with the Decryption Manager upon successful authorisation and identity

verification, (c) providing the mechanism that generates the decryption symmetric key and

securely transmitting it over the established SSL-enabled connection, and (d) providing the

revocation process of a generated decryption key upon needs.

As part of the Data Preparation workflow described in deliverable D3.2, the Encryption

Manager that resides on the On Premise Environment interacts with the OnPremise Worker

in order to receive the encryption instructions that contain the columns of the respective

dataset that must be encrypted based on the input of the data provider. Hence, the

Encryption Manager provides the interface for receiving these instructions and once the

instructions are received the encryption process is initiated. Furthermore, the Encryption

Manager provides a dedicated endpoint from which the OnPremise Worker can obtain the

current execution status of the encryption process. Once the encryption process is finished,

the produced ciphertext is saved locally and the OnPremise Worker is informed that the

process is completed via the endpoint that is provided by the OnPremise Worker. In the same

manner, the Encryption Manager that resides on the Secure and Private Space interacts with

the SecureSpace Worker and receives a request to encrypt the produced results of a data

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

35 / 134

analysis execution (in which all columns are encrypted), as depicted in the ICARUS application

execution workflow of the Data Analytics and Visualisations workflows described in

deliverable D3.2. For this purpose, an interface is provided by the Encryption Manager and

the produced ciphertext is stored locally on the Secure and Private Space in order to be latter

transmitted and stored in the ICARUS platform storage via the Data Handler.

As part of the data decryption workflow that is also described in deliverable D3.2 in the Data

Security workflows, the Encryption Manager (e.g. of the data provider) is interacting with the

Decryption Manager (e.g. of the data consumer) and the Key Pair administrator in order to

enable the secure sharing of encrypted datasets. In particular, the Encryption Manager

facilitates the data decryption process by providing an interface for receiving decryption

requests. By interacting with the Key Pair Administrator and the Decryption Manager a secure

connection is established, the proper decryption symmetric key is produced and is

transmitted to the Decryption Manager. The decryption process is executed during the

ICARUS application execution workflow that is presented in the Data Analytics and

Visualisations workflows document in deliverable D3.2 and in the cases where data assets or

the produced results of the analysis are downloaded locally or decrypted in order to be used

in a visualisation with no differentiation.

It should be mentioned that the upcoming versions of the Encryption Manager will include

the efficient revocation process for the generated symmetric decryption key with the support

of the Key-Pair Administrator, in the case when access to an encrypted dataset must be

revoked for a specific data consumer.

The details of the interfaces described above are presented in the following sub-section.

3.6.2 Interfaces
In the following tables the interfaces of the Encryption Manager are defined.

Table 3-11: Encryption Manager -initiate process

ICARUS Technical Interface

Technical Interface ID EM01

Endpoint Name Initiate data encryption process

Endpoint Description Receives the instructions for the data encryption by the OnPremise Worker as set
by the data provider and initiates the data encryption process based on these
instructions. The endpoint is utilised also from the SecureSpace worker for the
encryption of the data analysis results.

Component Encryption Manager

Endpoint URL https://hostname[:port]/v1/encryption/instructions

HTTP method POST

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

36 / 134

Request Parameters N/A

Request Body {
 “processId”: “string”,
 “filePath”: “string”,
 “type“: “encryption”,
 “instructions”: [
 {"original_field": String, "icarus_field": “string”}
]
}

Response Body • 200 OK
• 400 Bad Request
• 404 Not Found

Table 3-12: Encryption Manager - process status

ICARUS Technical Interface

Technical Interface ID EM02

Endpoint Name Ongoing data encryption process status

Endpoint Description Receives the relevant data encryption process id and returns the current
execution status of the process.

Component Encryption Manager

Endpoint URL https://hostname[:port]/v1/encryption/process-status/{processId}

HTTP method GET

Request Parameters • processId: The id of the process.

Request Body None

Response Body {
 “processId”: “string”,
 "currentStatus": “NOTSTARTED | INPROGRESS | COMPLETED | FAILED”
}

Table 3-13: Encryption Manager - receive decryption request

ICARUS Technical Interface

Technical Interface ID EM03

Endpoint Name Receive data decryption requests

Endpoint Description Receives the data decryption request from the Key-Pair Administrator and
initiates the data decryption process from the data provider’s side. In the
background, an attempt to establish an SSL-enabled connection is initiated and if
it is established, the existence of a valid smart contract is confirmed and then the
decryption symmetric key is transmitted over this connection.

If the connection is successful, a positive response is sent to the Key-Pair
Administrator else a negative response is sent

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

37 / 134

Component Encryption Manager

Endpoint URL https://hostname[:port]/v1/encryption/init-decryption

HTTP method POST

Request Parameters N/A

Request Body {
 "data_asset_id": “string”,
 "data_consumer_id": “string”,
 "connection_details": {"connection_id": “string”, "connection_URL":
 “string”}
}

Response Body • 200 OK
• 400 Bad Request
• 401 Unauthorised

3.7 Decryption Manager

3.7.1 Services Outline
The Decryption Manager component is responsible for enabling the secure and effective

decryption of the encrypted datasets on the data consumer side when legitimate access has

been obtained (based on a contract) without compromising the data privacy of the data

provider.

The Decryption Manager is involved in the Data Encryption and Data Decryption service, as

described in the deliverable D3.2, along with the Encryption Manager and the Key Pair

Administrator. The Decryption Manager offers the decryption mechanism of the encrypted

ciphertexts and facilitates the execution of the data decryption workflow that is described in

deliverable D3.2 in the Data Security workflows. In detail, the Decryption Manager is involved

in the process, along with the Encryption Manager and the Key Pair Administrator, in order

to: (a) establish the required SSL-enabled connection with the Encryption Manager with the

help of Key Pair Administrator and (b) acquire the produced from the Encryption Manager

decryption symmetric key in order to perform the decryption of the ciphertext.

The Decryption Manager provides the interface that receives the requests for the decryption

of the data assets from the rest of the components of the platform. Upon receiving the

decryption request, the Decryption Manager initiates the decryption process by interacting

with the Key Pair Administrator in order to establish the secure connection with the

Encryption Manager and request for the decryption symmetric key. Provided that the request

is accepted by the Encryption Manager after performing the necessary access validation

processes, the Decryption Manager receives the produced decryption symmetric key and

performs the decryption of the data asset. The produced encrypted data asset is saved locally

in order to be exploited. As described also in section 3.6, the decryption process is performed

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

38 / 134

during the ICARUS application execution workflow, as presented in the Data Analytics and

Visualisations workflows in deliverable D3.2, and during the download process or the

visualisation process that is presented in the same section of D3.2.

The details of the interfaces described above are presented in following the sub-section.

3.7.2 Interfaces
In the following tables the interfaces of the Decryption Manager are defined.

Table 3-14: Decryption Manager - initiate process

ICARUS Technical Interface

Technical Interface ID DM01

Endpoint Name Initiate data decryption requests

Endpoint Description Receives the data decryption request and initiates the data decryption process
from the data consumer’s side. In the background, the Key-Pair Administrator is
contacted in order to setup the connection with corresponding data provider.
Once the connection is set and the decryption symmetric key is received, the
decryption process is performed.

Component Decryption Manager

Endpoint URL https://hostname[:port]/v1/decryption/initiate

HTTP method POST

Request Parameters N/A

Request Body {
 "data_asset_id": “string”,
 “purpose”: “DATAANALYSIS | VISUALISE | DOWNLOAD”
}

Response Body • 200 OK
• 400 Bad Request
• 401 Unauthorised

Table 3-15: Decryption Manager - check connection response

ICARUS Technical Interface

Technical Interface ID DM02

Endpoint Name Check connection response

Endpoint Description Process the connection response from the data provider.

Component Decryption Manager

Endpoint URL https://hostname[:port]/v1/decryption/connection-status

HTTP method POST

Request Parameters N/A

Request Body {

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

39 / 134

 "data_asset_id": “string”,
 “purpose”: “DATAANALYSIS | VISUALISE | DOWNLOAD”,
 “connection_id”: “string”,
}

Response Body • 200 OK with “connection_status”: “CONNECTED”
• 400 Bad Request with “connection_status”: “REJECTED”

Table 3-16: Decryption Manager -process decryption response

ICARUS Technical Interface

Technical Interface ID DM03

Endpoint Name Process decryption response

Endpoint Description Process the decryption response from the data provider and wait for the
decryption symmetric key through the SSL-enabled connection.

Component Decryption Manager

Endpoint URL https://hostname[:port]/v1/decryption/response

HTTP method POST

Request Parameters N/A

Request Body {
 "data_asset_id": “string”,
 “purpose”: [“DATAANALYSIS”, “VISUALISE”, “DOWNLOAD”],
 “response_status”: “APPROVED | REJECTED”
}

Response Body • 200 OK
• 400 Bad Request

3.8 Key-Pair Administrator

3.8.1 Services Outline
The Key-Pair Administrator is the component complementing the data decryption process by

enabling the establishment of the secure SSL-enabled connection between the Encryption

Manager and the Decryption Manager in order to perform the secure exchange of the

decryption symmetric key to perform the data decryption process.

The Key-Pair Administrator is involved in the Data Encryption and Decryption service together

with the Encryption Manager and the Decryption Manager, as documented in deliverable

D3.2. The scope of the Key-Pair Administrator is to perform all the signalling operations

between the Decryption Manager residing at the data consumer side and the Encryption

Manager residing at the data provider side. As such, the Key-Pair Administrator enables the

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

40 / 134

setup of the secure transport encryption by supporting the two-sided authorisation process

and the identity verification.

As part of the data decryption workflow that is also described in deliverable D3.2 in the Data

Security workflows, the Key-Pair Administrator provides the interface to receive the

decryption request from the Decryption Manager and communicates with the Encryption

Manager of the corresponding data provider in order to establish the secure connection. The

appropriate SSL handshake is executed as a background operation executed between the

Encryption Manager and the Decryption Manager. Once the connection is established, the

Key-Pair Administrator is performing a data access request to the access policy enforcement

endpoint of the Policy Manager, that is described in section 3.11, in order to verify that the

data consumer is eligible to access to the requested dataset. Once the access is granted, the

Key-Pair Administrator is informing the Encryption Manager for the access decision and the

decryption symmetric key is generated and transmitted to the Decryption Manager through

the secure connection.

It should be mentioned that the upcoming versions of the Key-Pair Administrator will include

the support for the revocation process, that will be handled by the Encryption Manager, for

the generated symmetric decryption key when access to an encrypted dataset must be

revoked for a specific data consumer.

The details of the interfaces described above are presented in the following sub-section.

3.8.2 Interfaces
In the following tables the interfaces of the Key-Pair Administrator are defined.

Table 3-17: Key Pair Administrator - connection request

ICARUS Technical Interface

Technical Interface ID KPA01

Endpoint Name Receive connection request

Endpoint Description Receives the connection request from the Decryption Manager running on the
data consumer’s side. It initiates the connection with the Encryption Manager
running on the data provider’s side. In the background, the Key-Pair
Administrator discovers the connection details of the data provider and initiates
a decryption request by passing the connection details of the data consumer to
the data provider. If the connection details are accepted the two-sided
authorisation process and the identity verification is performed and the
connection is established.

Component Key-Pair Administrator

Endpoint URL https://hostname[:port]/v1/keypair-admin/connection-request

HTTP method POST

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

41 / 134

Request Parameters N/A

Request Body {

 "data_asset_id": “string”,

 "data_consumer_id": “string”,

 "connection_details": {"connection_id": “string”, "connection_URL":
 “string”}

}

Response Body • 200 OK
• 400 Bad Request
• 401 Unauthorised

Table 3-18: Key Pair Administrator - check data access rights

ICARUS Technical Interface

Technical Interface ID KPA02

Endpoint Name Check data access rights

Endpoint Description Receives a request to check the data assets rights and returns the data access
verification. The Key-Pair Administrator acts as a mediator for the data access
verification process that is performed by the Policy Manager.

Component Key-Pair Administrator

Endpoint URL https://hostname[:port]/v1/keypair-admin/access

HTTP method POST

Request Parameters N/A

Request Body {

 "data_asset_id": “string”,

 "data_consumer_id": “string”,

 "action": "string"

}

Response Body • 200 OK
• 400 Bad Request
• 401 Unauthorised

3.9 Data Handler

3.9.1 Services Outline
The Data Handler acts as a data gateway in the ICARUS architecture, as it is the component

that provides the functionalities related to making data assets and their metadata available

to and from the ICARUS platform, as well as among different platform components.

Specifically, it supports the complete workflow of uploading proprietary and open datasets to

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

42 / 134

the platform, downloading datasets from the platform to the end user’s On Premise

Environment and/or to a Secure and Private Space, and uploading data generated in a Secure

and Private Space back into the core platform’s storage. Moreover, the Data Handler is

responsible for the provision of the metadata of a dataset by its provider and is therefore the

component that provides the corresponding interfaces. Data Handler, as shown in deliverable

D3.2 and briefly explained above, holds an important role in the workflows of Data

Preparation, and Data Collection and is also involved in the Notifications workflows in the

case of notifications for new datasets. The Data Handler is therefore the core component

involved in the metadata handling and the data upload services, also described in deliverable

D3.2.

It should be noted that the component’s functionality has been slightly extended compared

to what was documented in deliverables D3.1 and D3.2 and now includes the definition of the

dataset licensing and IPR metadata, previously seen as responsibility of the Data License and

Agreement Manager component. This decision was made to ensure a consistent and smooth

workflow regarding metadata provision by the dataset provider, as the Data Handler is the

component responsible for the definition of all other dataset related metadata, both the ones

automatically calculated and the ones manually provided by the data owners.

Furthermore, the Data Handler acts as a layer above the ICARUS storage, offering services for

other components to store in and retrieve information from it. As expected by its wide scope,

the component offers various endpoints which are documented in the following sub-section.

3.9.2 Interfaces
In the following tables the interfaces of the Data Handler are defined.

Table 3-19: Data Handler - create new data preparation job

ICARUS Technical Interface

Technical Interface ID DH01

Endpoint Name Create new data preparation (data checkin) job

Endpoint Description Initiates the process of a new dataset check-in by creating a new data preparation
job

Component Data Handler

Endpoint URL https://icarus_platform[:port]/api/v1/handler/datacheckin

HTTP method POST

Request Parameters N/A

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

43 / 134

Request Body {
 "complete": true,
 "completed": true,
 "configuration": { },
 "created": {
 "date": 0,
 "day": 0,
 "hours": 0,
 "minutes": 0,
 "month": 0,
 "nanos": 0,
 "seconds": 0,
 "time": 0,
 "timezoneOffset": 0,
 "year": 0
 },
 "data_asset_id": 0,
 "description": "string",
 "executionstate": "string",
 "name": "string",
 "user": {
 "department": "string",
 "firstname": "string",
 "id": 0,
 "lastname": "string",
 "organization": {
 "businessname": "string",
 "city": "string",
 "country": "string",
 "websiteurl": "string"
 },
 "username": "string"
 },
 "sample": { }
}

Response Body • 200 OK
• 201 Created
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-20: Data Handler - get data preparation job

ICARUS Technical Interface

Technical Interface ID DH02

Endpoint Name Get data preparation (data checkin) job

Endpoint Description Retrieves an existing data preparation job

Component Data Handler

Endpoint URL https://icarus_platform[:port]/api/v1/handler/datacheckin/{dcid}

HTTP method GET

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

44 / 134

Request Parameters • dcid: The id of the data checkin job

Request Body N/A

Response Body {
 "complete": true,
 "completed": true,
 "configuration": { },
 "created": {
 "date": 0,
 "day": 0,
 "hours": 0,
 "minutes": 0,
 "month": 0,
 "nanos": 0,
 "seconds": 0,
 "time": 0,
 "timezoneOffset": 0,
 "year": 0
 },
 "data_asset_id": 0,
 "description": "string",
 "executionstate": "string",
 "name": "string",
 "user": {
 "department": "string",
 "firstname": "string",
 "id": 0,
 "lastname": "string",
 "organization": {
 "businessname": "string",
 "city": "string",
 "country": "string",
 "websiteurl": "string"
 },
 "username": "string"
 },
 "sample": { }
}

Table 3-21: Data Handler - modify data preparation job

ICARUS Technical Interface

Technical Interface ID DH03

Endpoint Name Modify data preparation (data checkin) job

Endpoint Description Initiates the process of a new dataset check-in by creating a new data preparation
job

Component Data Handler

Endpoint URL https://icarus_platform[:port]/api/v1/handler/datacheckin/{dcid}

HTTP method PUT

Request Parameters • dcid: The id of the data checkin job

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

45 / 134

Request Body {
 "complete": true,
 "completed": true,
 "configuration": { },
 "created": {
 "date": 0,
 "day": 0,
 "hours": 0,
 "minutes": 0,
 "month": 0,
 "nanos": 0,
 "seconds": 0,
 "time": 0,
 "timezoneOffset": 0,
 "year": 0
 },
 "data_asset_id": 0,
 "description": "string",
 "executionstate": "string",
 "name": "string",
 "user": {
 "department": "string",
 "firstname": "string",
 "id": 0,
 "lastname": "string",
 "organization": {
 "businessname": "string",
 "city": "string",
 "country": "string",
 "websiteurl": "string"
 },
 "username": "string"
 },
 "sample": { }
}

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-22: Data Handler - create data preparation instructions

ICARUS Technical Interface

Technical Interface ID DH04

Endpoint Name Create data preparation instructions

Endpoint Description Accepts and stores a set of data preparation instructions for the specified step of
the process

Component Data Handler

Endpoint URL https://icarus_platform[:port]/api/v1/handler/datacheckin/{dcid}/{step}

HTTP method PUT

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

46 / 134

Request Parameters • step: step of the data preparation process (datacheckin job)
• dcid: id of the data preparation job

Request Body {
 "completed": true,
 "context": { },
 "datacheckinjobid": 0,
 "id": 0,
 "updated": {
 "date": 0,
 "day": 0,
 "hours": 0,
 "minutes": 0,
 "month": 0,
 "nanos": 0,
 "seconds": 0,
 "time": 0,
 "timezoneOffset": 0,
 "year": 0
 }
}

Response Body • 200 OK
• 201 Created
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-23: Data Handler - get data preparation instructions

ICARUS Technical Interface

Technical Interface ID DH05

Endpoint Name Get data preparation instructions for a specific job for a specific step

Endpoint Description Retrieve a set of data preparation instructions for the specified step of the
specified data preparation job

Component Data Handler

Endpoint URL https://icarus_platform[:port]/api/v1/handler/datacheckin/{dcid}/{step}

HTTP method GET

Request Parameters • step: step of the data preparation process (datacheckin job)
• dcid: id of the data preparation job

Request Body N/A

Response Body {
 "completed": true,
 "context": { },
 "datacheckinjobid": 0,
 "id": 0,
 "updated": {
 "date": 0,
 "day": 0,
 "hours": 0,

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

47 / 134

 "minutes": 0,
 "month": 0,
 "nanos": 0,
 "seconds": 0,
 "time": 0,
 "timezoneOffset": 0,
 "year": 0
 }
}

Table 3-24: Data Handler - execute data preparation instructions

ICARUS Technical Interface

Technical Interface ID DH06

Endpoint Name Execute data preparation instructions

Endpoint Description When this service is invoked, the Data Handler will assemble all data preparation
instructions of the specified datacheckin job, re-structure them and send them to
the Master Controller in order to initiate their execution process

Component Data Handler

Endpoint URL https://icarus_platform[:port]/api/v1/handler/datacheckin/{dcid}/execute

HTTP method POST

Request Parameters • id: data preparation (datacheckin) job id

Request Body N/A

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-25: Data Handler - get data preparation status

ICARUS Technical Interface

Technical Interface ID DH07

Endpoint Name Get data preparation status

Endpoint Description Returns the status of the specified data preparation job

Component Data Handler

Endpoint URL https://icarus_platform[:port]/api/v1/handler/datacheckin/{dcid}/status

HTTP method GET

Request Parameters • dcid: the data preparation job id

Request Body N/A

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

48 / 134

Response Body Returns the status of the job:

• Uncompleted
• InProgress
• MappingState
• CleaningState
• EncryptionState
• AnonymisationState
• IndexingState
• Completed
• Failed

Else an error message.

Table 3-26: Data Handler - upload data sample

ICARUS Technical Interface

Technical Interface ID DH08

Endpoint Name Upload data sample

Endpoint Description Handles the upload of a dataset sample in the ICARUS platform

Component Data Handler

Endpoint URL https://icarus_platform[:port]/api/v1/handler/datacheckin/{dcid}/sample

HTTP method POST

Request Parameters • dcid: the data preparation job id

Request Body {
 "dataname": "string",
 "fielddata": "string",
 "fielddatacleaned": "string",
 "id": "string",
 "user": "string"
}

Response Body • 200 OK
• 201 Created
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-27: Data Handler - upload data

ICARUS Technical Interface

Technical Interface ID DH09

Endpoint Name Upload data

Endpoint Description Handles the upload of a dataset in the ICARUS platform

Component Data Handler

Endpoint URL https://icarus_platform[:port]/api/v1/handler/upload/{dcid}/dataset

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

49 / 134

HTTP method POST

Request Parameters • dcid: the data preparation job id

Request Body Header: Content-Type: multipart/form-data;

{
 "dataname": "string",
 "id": "string",
 "user": "string"
}

Response Body • 200 OK
• 201 Created
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-28: Data Handler - download data

ICARUS Technical Interface

Technical Interface ID DH10

Endpoint Name Download data

Endpoint Description Initiates the process for downloading a dataset

Component Data Handler

Endpoint URL https://icarus_platform[:port]/api/v1/handler/download/{id}

HTTP method GET

Request Parameters • id: the dataset id

Request Body N/A

Response Body {

 "dataname": "string"

}

Table 3-29: Data Handler - transfer data

ICARUS Technical Interface

Technical Interface ID DH11

Endpoint Name Transfer data

Endpoint Description Initiates the process for transferring the specified dataset from the core ICARUS
storage to a Secure and Private space. The actual file transfer is handled internally
with the appropriate backend process and the relevant driver for the DB.

Component Data Handler

Endpoint URL https://icarus_platform[:port]/api/v1/handler/download/{id}

HTTP method POST

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

50 / 134

Request Parameters • id: the dataset id

Request Body N/A

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-30: Data Handler - add metadata

ICARUS Technical Interface

Technical Interface ID DH12

Endpoint Name Add metadata to the specified dataset

Endpoint Description Add metadata fields to the specified dataset

Component Data Handler

Endpoint URL https://icarus_platform[:port]/api/v1/handler/data-asset/{id}/metadata

HTTP method POST

Request Parameters • id: the dataset id

Request Body {
 "metadata": [
 "core": { },
 "semantic": { },
 "distribution": { },
 "sharing": { },
 "preservation": { }
]
}

Response Body • 200 OK
• 201 Created
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-31: Data Handler - get metadata

ICARUS Technical Interface

Technical Interface ID DH13

Endpoint Name Get dataset metadata

Endpoint Description Get all metadata for the specified dataset

Component Data Handler

Endpoint URL https://icarus_platform[:port]/api/v1/handler/data-asset/{id}/metadata

HTTP method GET

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

51 / 134

Request Parameters • id: the dataset id

Request Body N/A

Response Body {
 "metadata": [
 "core": { },
 "semantic": { },
 "distribution": { },
 "sharing": { },
 "preservation": { }
]
}

Table 3-32: Data Handler - update metadata

ICARUS Technical Interface

Technical Interface ID DH14

Endpoint Name Update dataset metadata

Endpoint Description Update metadata fields of the specified dataset

Component Data Handler

Endpoint URL https://icarus_platform[:port]/api/v1/handler/data-asset/{id}/metadata

HTTP method PUT

Request Parameters • id: the dataset id

Request Body {
 "metadata": [
 "core": { },
 "semantic": { },
 "distribution": { },
 "sharing": { },
 "preservation": { }
]
}

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

3.10 Data License and Agreement Manager

3.10.1 Services Outline
In deliverables D3.1 and D3.2, the Data License and Agreement Manager was described as the

component responsible for handling all processes related to the data licenses and IPR

attributes, as well as the drafting, signing, and enforcing the smart data contracts that

correspond to data sharing agreements between platform users. As such, the component,

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

52 / 134

which resides in the core ICARUS platform, participates in numerous of the workflows

presented in deliverable D3.2 and plays a crucial role in the provision of data licensing and

data brokerage services by ICARUS.

However, in order to ensure a smoother user experience and increased consistency, it was

decided that the interface used for the definition of license related attributes of a given

dataset should be part of the Data Handler, which also provides the interfaces for the

definition of all other dataset metadata. The Data License and Agreement Manager is thus

primarily responsible for the data brokerage functionalities and therefore interacts with

various components in order to enable mainly the following processes:

A user (data consumer) should be able to issue a request to purchase a dataset owned by

another user (data provider) and the request should be stored in the platform. After being

notified of the request, the dataset provider should be able to refuse the purchase request

for the dataset or initiate the data brokerage process by drafting a data contract with the

appropriate terms. The drafted contract should then be uploaded in the Blockchain and the

(prospective) data consumer, should be allowed to review it and accept it, reject it or propose

changes accordingly. In case changes are proposed, the data provider should in turn be able

to accept, reject or propose new changes. In order to perform these processes, a graphical

interface is used by the data provider and the data consumer, but all changes are also

propagated to the Blockchain by the Data License and Agreement manager, which updates

the terms and/or the status of the smart contract accordingly. Once a contract is accepted by

both parties, the component also allows the consumer to provide proof of payment, in which

case the contract is validated. At all times, the component is responsible of checking and

reporting on the status of a smart contract and of updating the status as needed. These

functionalities are implemented through the interfaces reported in the following sub-section.

It should be noted that the RPC commands used to implement the interaction with the

Blockchain, although their functionality has been described, cannot be documented in the

same format and are therefore not relevant to the information documented in the next sub-

section.

3.10.2 Interfaces
In the following tables the interfaces of the Data License and Agreement Manager are
defined.

Table 3-33: Data License and Agreement Manager - request to buy data asset

ICARUS Technical Interface

Technical Interface ID DLAM01

Endpoint Name Request to Buy Data Asset

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

53 / 134

Endpoint Description Receives a request issued by an ICARUS user to purchase a data asset that is
owned by another user

Component Data License and Agreement Manager

Endpoint URL https://icarus_platform[:port]/api/v1/data-asset/buy-asset

HTTP method POST

Request Parameters N/A

Request Body {
 "asset_id": 0,
 "comments": "string",
 "created": {
 "date": 0,
 "day": 0,
 "hours": 0,
 "minutes": 0,
 "month": 0,
 "nanos": 0,
 "seconds": 0,
 "time": 0,
 "timezoneOffset": 0,
 "year": 0
 },
 "data_consumer_id": 0,
 "data_owner_id": 0,
 "duration": 0,
 "fields": "string",
 "filters": "string",
 "id": 0,
 "request": true
}

Response Body • 200 OK
• 201 Created
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-34: Data License and Agreement Manager - retrieve request to buy data asset

ICARUS Technical Interface

Technical Interface ID DLAM02

Endpoint Name Retrieve a request to Buy a Data Asset

Endpoint Description Retrieves the information related to a specific issued request to buy a data asset

Component Data License and Agreement Manager

Endpoint URL https://icarus_platform[:port]/api/v1/data-asset/buy-asset/{id}

HTTP method GET

Request Parameters • Id: the request id

Request Body N/A

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

54 / 134

Response Body {
 "asset_id": 0,
 "comments": "string",
 "created": {
 "date": 0,
 "day": 0,
 "hours": 0,
 "minutes": 0,
 "month": 0,
 "nanos": 0,
 "seconds": 0,
 "time": 0,
 "timezoneOffset": 0,
 "year": 0
 },
 "data_consumer_id": 0,
 "data_owner_id": 0,
 "duration": 0,
 "fields": "string",
 "filters": "string",
 "id": 0,
 "request": true
}

Table 3-35: Data License and Agreement Manager - reject request to buy data asset

ICARUS Technical Interface

Technical Interface ID DLAM03

Endpoint Name Reject Request to Buy Data Asset

Endpoint Description Changes the status of a buy data asset request to rejected

Component Data License and Agreement Manager

Endpoint URL https://icarus_platform[:port]/api/v1/data-asset/buy-asset/{id}/reject

HTTP method PUT

Request Parameters • id: the id of the request to buy asset

Request Body N/A

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-36: Data License and Agreement Manager - accept request to buy data asset

ICARUS Technical Interface

Technical Interface ID DLAM04

Endpoint Name Accept Request to Buy Data Asset

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

55 / 134

Endpoint Description Changes the status of a buy data asset request to accepted

Component Data License and Agreement Manager

Endpoint URL https://icarus_platform[:port]/api/v1/data-asset/buy-asset/{id}/accept

HTTP method PUT

Request Parameters • id: the id of the request to buy asset

Request Body N/A

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-37: Data License and Agreement Manager - mark buy data asset as paid

ICARUS Technical Interface

Technical Interface ID DLAM05

Endpoint Name Mark Request to Buy Data Asset as Paid

Endpoint Description Changes the status of a buy data asset request to paid (valid)

Component Data License and Agreement Manager

Endpoint URL https://icarus_platform[:port]/api/v1/data-asset/buy-asset/{id}/paid

HTTP method PUT

Request Parameters • id: the id of the request to buy asset

Request Body N/A

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-38: Data License and Agreement Manager - create new contract

ICARUS Technical Interface

Technical Interface ID DLAM06

Endpoint Name Create new contract

Endpoint Description Create a new smart contract for a data brokerage agreement

Component Data License and Agreement Manager

Endpoint URL https://icarus_platform[:port]/api/v1/contract

HTTP method POST

Request Parameters N/A

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

56 / 134

Request Body {
 "amount": 0,
 "hashed_asset_id": 0,
 "contract_address": "string",
 "currency": "string",
 "data_consumer_address": 0,
 "data_owner_address": 0,
 "duration": 0,
 "fields": [],
 "filters": [],
 "id": 0,
 "stage": "string",
 "tax": 0,
 "hashed_terms": [],
 "eth_address_manager": 0,
 "validated_at": {
 "date": 0,
 "day": 0,
 "hours": 0,
 "minutes": 0,
 "month": 0,
 "nanos": 0,
 "seconds": 0,
 "time": 0,
 "timezoneOffset": 0,
 "year": 0
 }
}

Response Body • 200 OK
• 201 Created
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-39: Data License and Agreement Manager - get contract

ICARUS Technical Interface

Technical Interface ID DLAM07

Endpoint Name Get a contract

Endpoint Description Get a specific smart contract for a data brokerage agreement

Component Data License and Agreement Manager

Endpoint URL https://icarus_platform[:port]/api/v1/contract/{id}

HTTP method GET

Request Parameters • id: the id of the contract

Request Body N/A

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

57 / 134

Response Body {
 "amount": 0,
 "hashed_asset_id": 0,
 "contract_address": "string",
 "currency": "string",
 "data_consumer_address": 0,
 "data_owner_address": 0,
 "duration": 0,
 "fields": [],
 "filters": [],
 "id": 0,
 "stage": "string",
 "tax": 0,
 "hashed_terms": [],
 "eth_address_manager": 0,
 "validated_at": {
 "date": 0,
 "day": 0,
 "hours": 0,
 "minutes": 0,
 "month": 0,
 "nanos": 0,
 "seconds": 0,
 "time": 0,
 "timezoneOffset": 0,
 "year": 0
 }
}

Table 3-40: Data License and Agreement Manager - update contract

ICARUS Technical Interface

Technical Interface ID DLAM08

Endpoint Name Update smart data contract

Endpoint Description Update the terms and/or status (stage) of a smart contract for a data brokerage
agreement

Component Data License and Agreement Manager

Endpoint URL https://icarus_platform[:port]/api/v1/contract/{id}

HTTP method PUT

Request Parameters • id: the id of the contract

Request Body {
 "amount": 0,
 "asset_id": 0,
 "contract_address": "string",
 "currency": "string",
 "data_consumer_id": 0,
 "data_owner_id": 0,
 "duration": 0,
 "fields": "string",
 "filters": "string",

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

58 / 134

 "id": 0,
 "stage": "string",
 "tax": 0,
 "terms": [],
 "user_id": 0,
 "validated_at": {
 "date": 0,
 "day": 0,
 "hours": 0,
 "minutes": 0,
 "month": 0,
 "nanos": 0,
 "seconds": 0,
 "time": 0,
 "timezoneOffset": 0,
 "year": 0
 }
}

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

3.11 Policy Manager

3.11.1 Services Outline
The Policy Manager is the component that is enabling the effective and robust protection of

any type of resource of the ICARUS platform such as data, applications, any kind of system

resources, as well as all other relevant objects. To achieve this, the Policy Manager offers a

sophisticated authorisation engine that provides the reliable access control mechanism which

enforces the selected restriction of access to these resources and eliminates the unauthorised

disclosure to any of these resources.

As described in deliverable D3.2, the Policy Manager component is involved in the Policies

Enforcement service that is involved in multiple workflows offering different functionalities

on each one of them. The first core part of the Policy Manager component that facilitates the

efficient and effective operation of the access control mechanism is the user management

process, as presented in the Data Security workflows in section 2.7 of deliverable D3.2, having

direct interaction the platform’s user interface. Within this process, the creation (or

registration), modification and suspension of the organisation entities, as well as the creation

of the respective invitation link and token for the users (members) of each organisation that

are invited by the organisation manager, is facilitated with a set of interfaces provided by the

Policy Manager. Furthermore, the Policy Manager enables the registration of the invited users

(members) and creation of their user profile, as well as the modification and suspension of

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

59 / 134

their user profile, with the required interfaces. Finally, the Policy Manager provides the

respective interfaces for the user authentication via the corresponding login process.

The second core part of the Policy Manager component is related to the access policy lifecycle

management, as presented also in the Data Security workflows in section 2.7 of deliverable

D3.2, and includes the creation, update or deletion of an access control policy over a resource

of the platform. This process is also involved in the manual metadata definition process

described in the Data Collection workflows in section 2.3 and in the creation of the metadata

of an ICARUS application as described in the Data Analytics workflows in section 2.4 in the

deliverable D3.2. Hence, the Policy Manager provides the respective interface that handles

all the operations for the access policy lifecycle management and interacts with the Data

Handler component that dispatches the respective actions based on the input received by the

user of the platform. These access policies are deployed on the authorisation engine in order

to be used during the authorisation process.

The third core part of the Policy Manager component is responsible for the access policy

enforcement that controls and regulates the access of any resource, as presented in the Data

Security workflows in section 2.7 of deliverable D3.2, and includes the processing of the

received access request, the evaluation of the relevant policies and required attributes and

the formulation of an access control decision. This process is executed before any resource of

the platform is accessed in order to safeguard the protection of the underlying resources.

Furthermore, the access policy enforcement is involved in the datasets query and dataset

exploration processes in order to formulate the access policy enforcement during the query

and exploration step with an access control filter that is incorporated in the produced query

to the underlying query engine. Finally, the access policy enforcement is involved in the

ICARUS application design and the results visualisation workflows described in the Data

Analytics workflows in section 2.4 in order to validate the access to the respective data assets

during the data decryption process. To facilitate this process, the Policy Manager offers two

options: (a) a specialised library that is integrated in the source of the component which

requires the access policy enforcement functionalities in order to properly annotate all its

interfaces so that the Policy Manager intercepts all requests in order to automatically

formulate the access decision prior to the execution of the process offered by the respective

interface, and (b) an access policy enforcement endpoint that is utilised on-demand by the

rest of the ICARUS platform’s components in all cases that access to an underlying resource

is attempted.

The details of the interfaces described above are presented in the following sub-section.

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

60 / 134

3.11.2 Interfaces
In the following tables the interfaces of the Policy Manager are defined.

Table 3-41: Policy Manager - create organisation

ICARUS Technical Interface

Technical Interface ID PM01

Endpoint Name Create organisation

Endpoint Description Receives the request to register an organisation in the ICARUS platform

Component Policy Manager

Endpoint URL https://icarus_platform[:port]/api/v1/policy-manager/organisation

HTTP method POST

Request Parameters None

Request Body {
 "address": "string",
 "bannerimage": "string",
 "businessname": "string",
 "city": "string",
 "country": "string",
 "description": "string",
 "ethaddress": "string",
 "ethwallet": "string",
 "id": 0,
 "legalname": "string",
 "logoimage": "string",
 "manager": {
 "department": "string",
 "email": "string",
 "enabled": true,
 "firstlogin": true,
 "firstname": "string",
 "id": 0,
 "image": "string",
 "lastname": "string",
 "password": "string",
 "passwordexpired": true,
 "phone": "string",
 "position": "string",
 "rolesAsStringList": [
 "string"
],
 "userRoles": [
 {
 "id": 0,
 "role": {
 "id": 0,
 "name": "string"
 }
 }
],
 "username": "string"

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

61 / 134

 },
 "postalcode": "string",
 "type": {
 "id": 0,
 "name": "string"
 },
 "wallet": "string",
 "websiteurl": "string"
}

Response Body • 200 OK
• 201 Created
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-42: Policy Manager - get organisation

ICARUS Technical Interface

Technical Interface ID PM02

Endpoint Name Get an organisation

Endpoint Description Receives the request to get an available organisation in the ICARUS platform

Component Policy Manager

Endpoint URL https://icarus_platform[:port]/api/v1/policy-manager/organisation/{id}

HTTP method GET

Request Parameters • id: the id of the organisation

Request Body None

Response Body {
 "address": "string",
 "bannerimage": "string",
 "businessname": "string",
 "city": "string",
 "country": "string",
 "description": "string",
 "ethaddress": "string",
 "ethwallet": "string",
 "id": 0,
 "legalname": "string",
 "logoimage": "string",
 "manager": {
 "department": "string",
 "email": "string",
 "enabled": true,
 "firstlogin": true,
 "firstname": "string",
 "id": 0,
 "image": "string",
 "lastname": "string",
 "password": "string",
 "passwordexpired": true,

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

62 / 134

 "phone": "string",
 "position": "string",
 "rolesAsStringList": [
 "string"
],
 "userRoles": [
 {
 "id": 0,
 "role": {
 "id": 0,
 "name": "string"
 }
 }
],
 "username": "string"
 },
 "postalcode": "string",
 "type": {
 "id": 0,
 "name": "string"
 },
 "wallet": "string",
 "websiteurl": "string"

}

Table 3-43: Policy Manager - get all organisations

ICARUS Technical Interface

Technical Interface ID PM03

Endpoint Name Get all organisations

Endpoint Description Receives the request to get all available organisations in the ICARUS platform

Component Policy Manager

Endpoint URL https://icarus_platform[:port]/api/v1/policy-manager/organisation/

HTTP method GET

Request Parameters None

Request Body None

Response Body [{
 "address": "string",
 "bannerimage": "string",
 "businessname": "string",
 "city": "string",
 "country": "string",
 "description": "string",
 "ethaddress": "string",
 "ethwallet": "string",
 "id": 0,
 "legalname": "string",
 "logoimage": "string",
 "manager": {

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

63 / 134

 "department": "string",
 "email": "string",
 "enabled": true,
 "firstlogin": true,
 "firstname": "string",
 "id": 0,
 "image": "string",
 "lastname": "string",
 "password": "string",
 "passwordexpired": true,
 "phone": "string",
 "position": "string",
 "rolesAsStringList": [
 "string"
],
 "userRoles": [
 {
 "id": 0,
 "role": {
 "id": 0,
 "name": "string"
 }
 }
],
 "username": "string"
 },
 "postalcode": "string",
 "type": {
 "id": 0,
 "name": "string"
 },
 "wallet": "string",
 "websiteurl": "string"

}]

Table 3-44: Policy Manager - update organisation

ICARUS Technical Interface

Technical Interface ID PM04

Endpoint Name Update organisation

Endpoint Description Receives the request to update an organisation in the ICARUS platform

Component Policy Manager

Endpoint URL https://icarus_platform[:port]/api/v1/policy-manager/organisation/{id}

HTTP method PUT

Request Parameters • id: the id of the organisation

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

64 / 134

Request Body {
 "address": "string",
 "bannerimage": "string",
 "businessname": "string",
 "city": "string",
 "country": "string",
 "description": "string",
 "ethaddress": "string",
 "ethwallet": "string",
 "id": 0,
 "legalname": "string",
 "logoimage": "string",
 "manager": {
 "department": "string",
 "email": "string",
 "enabled": true,
 "firstlogin": true,
 "firstname": "string",
 "id": 0,
 "image": "string",
 "lastname": "string",
 "password": "string",
 "passwordexpired": true,
 "phone": "string",
 "position": "string",
 "rolesAsStringList": [
 "string"
],
 "userRoles": [
 {
 "id": 0,
 "role": {
 "id": 0,
 "name": "string"
 }
 }
],
 "username": "string"
 },
 "postalcode": "string",
 "type": {
 "id": 0,
 "name": "string"
 },
 "wallet": "string",
 "websiteurl": "string"
}

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-45: Policy Manager - suspend organisation

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

65 / 134

ICARUS Technical Interface

Technical Interface ID PM05

Endpoint Name Suspend an organisation

Endpoint Description Receives the request to suspend an organisation in the ICARUS platform

Component Policy Manager

Endpoint URL https://icarus_platform[:port]/api/v1/policy-manager/organisation/{id}

HTTP method DELETE

Request Parameters • id: the id of the organisation

Request Body None

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden

Table 3-46: Policy Manager - invite users to organisation

ICARUS Technical Interface

Technical Interface ID PM06

Endpoint Name Invite users to an organisation

Endpoint Description Receives the request to invite users to an organisation in the ICARUS platform

Component Policy Manager

Endpoint URL https://icarus_platform[:port]/api/v1/policy-
manager/organisation/{id}/users/invite

HTTP method PUT

Request Parameters • id: the id of the organisation

Request Body {
 "users": [{"email": "string","firstname": "string", "lastname": "string"}]
}

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-47: Policy Manager - get users of organisation

ICARUS Technical Interface

Technical Interface ID PM06

Endpoint Name Get users of an organisation

Endpoint Description Receives the request to get the users of an organisation in the ICARUS platform

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

66 / 134

Component Policy Manager

Endpoint URL https://icarus_platform[:port]/api/v1/policy-manager/organisation/{id}/users/

HTTP method GET

Request Parameters • id: the id of the organisation

Request Body {
"users": [{
 "department": "string",
 "email": "string",
 "enabled": true,
 "firstname": "string",
 "id": 0,
 "image": "string",
 "lastname": "string",
 "passwordexpired": true,
 "phone": "string",
 "position": "string",
 "username": "string"
 }]
}

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-48: Policy Manager - create user

ICARUS Technical Interface

Technical Interface ID PM07

Endpoint Name Create user

Endpoint Description Receives the request to create the user of an organisation in the ICARUS platform

Component Policy Manager

Endpoint URL https://icarus_platform[:port]/api/v1/policy-manager/user

HTTP method POST

Request Parameters None

Request Body {
 "department": "string",
 "email": "string",
 "enabled": true,
 "firstlogin": true,
 "firstname": "string",
 "id": 0,
 "image": "string",
 "lastname": "string",
 "organization": {
 "address": "string",
 "bannerimage": "string",
 "businessname": "string",

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

67 / 134

 "city": "string",
 "country": "string",
 "description": "string",
 "ethaddress": "string",
 "ethwallet": "string",
 "id": 0,
 "legalname": "string",
 "logoimage": "string",
 "postalcode": "string",
 "type": {
 "id": 0,
 "name": "string"
 },
 "users": [
 null
],
 "wallet": "string",
 "websiteurl": "string"
 },
 "password": "string",
 "passwordexpired": true,
 "phone": "string",
 "position": "string",
 "rolesAsStringList": [
 "string"
],
 "userRoles": [
 {
 "id": 0,
 "role": {
 "id": 0,
 "name": "string"
 }
 }
],
 "username": "string"
}

Response Body • 200 OK
• 201 Created
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-49: Policy Manager - update user

ICARUS Technical Interface

Technical Interface ID PM07

Endpoint Name Update user

Endpoint Description Receives the request to update the user of an organisation in the ICARUS platform

Component Policy Manager

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

68 / 134

Endpoint URL https://icarus_platform[:port]/api/v1/policy-manager/user/{id}

HTTP method PUT

Request Parameters None

Request Body {
 "department": "string",
 "email": "string",
 "enabled": true,
 "firstlogin": true,
 "firstname": "string",
 "id": 0,
 "image": "string",
 "lastname": "string",
 "passwordexpired": true,
 "phone": "string",
 "position": "string",
 "userRoles": [
 "string"
],
 "username": "string"
}

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-50: Policy Manager - get user

ICARUS Technical Interface

Technical Interface ID PM08

Endpoint Name Get user

Endpoint Description Receives the request to update the user of an organisation in the ICARUS platform

Component Policy Manager

Endpoint URL https://icarus_platform[:port]/api/v1/policy-manager/user/{id}

HTTP method GET

Request Parameters • Id: the id of the user

Request Body None

Response Body {
 "department": "string",
 "email": "string",
 "enabled": true,
 "firstlogin": true,
 "firstname": "string",
 "id": 0,
 "image": "string",
 "lastname": "string",
 "organization": {
 "address": "string",
 "bannerimage": "string",

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

69 / 134

 "businessname": "string",
 "city": "string",
 "country": "string",
 "description": "string",
 "ethaddress": "string",
 "ethwallet": "string",
 "id": 0,
 "legalname": "string",
 "logoimage": "string",
 "postalcode": "string",
 "type": {
 "id": 0,
 "name": "string"
 },
 "users": [
 null
],
 "wallet": "string",
 "websiteurl": "string"
 },
 "password": "string",
 "passwordexpired": true,
 "phone": "string",
 "position": "string",
 "rolesAsStringList": [
 "string"
],
 "userRoles": [
 {
 "id": 0,
 "role": {
 "id": 0,
 "name": "string"
 }
 }
],
 "username": "string"
}

Table 3-51: Policy Manager - suspend user

ICARUS Technical Interface

Technical Interface ID PM09

Endpoint Name Suspend a user

Endpoint Description Receives the request to suspend the user of an organisation in the ICARUS
platform

Component Policy Manager

Endpoint URL https://icarus_platform[:port]/api/v1/policy-manager/user/{id}

HTTP method DELETE

Request Parameters • Id: the id of the user

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

70 / 134

Request Body None

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden

Table 3-52: Policy Manager - login

ICARUS Technical Interface

Technical Interface ID PM10

Endpoint Name Login to the platform

Endpoint Description Receives the request to authorise the user of an organisation to access the
ICARUS platform

Component Policy Manager

Endpoint URL https://icarus_platform[:port]/api/v1/policy-manager/login

HTTP method POST

Request Parameters None

Request Body {
 “email”: “string”,
 “password”: “string”
}

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden

Table 3-53: Policy Manager - logout

ICARUS Technical Interface

Technical Interface ID PM11

Endpoint Name Logout of the platform

Endpoint Description Receives the request to logout the user of an organisation from the ICARUS
platform

Component Policy Manager

Endpoint URL https://icarus_platform[:port]/api/v1/policy-manager/logout/{id}

HTTP method POST

Request Parameters • id: the id of the user

Request Body None

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

71 / 134

• 404 Not Found

Table 3-54: Policy Manager - create access policy

ICARUS Technical Interface

Technical Interface ID PM12

Endpoint Name Create an access policy

Endpoint Description Receives the request to create a new access policy

Component Policy Manager

Endpoint URL https://icarus_platform[:port]/api/v1/policy-manager/authorisation/policy

HTTP method POST

Request Parameters None

Request Body In the case of single rule:
{
"type": "singleRule",
"access_rule": {
"rule_name": "string”,
"ruleOperator": "string",
"ruleOperand": "string",
"value": "string"
}

In the case of complex rules with AND or OR operand
{
"type": "complexRule",
"access_rule": {
"logicalOperator": "AND",
"segments": [
 {
 "type": "singlerule",
 "access_rule": {
 "rule_name": "string”,
 "ruleOperator": "string",
 "ruleOperand": "string",
 "value": "string"
 },
 "type": "singlerule",
 "access_rule": {
 "rule_name": "string”,
 "ruleOperator": "string",
 "ruleOperand": "string",
 "value": "string"
 }]
}

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

72 / 134

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-55: Policy Manager - modify access policy

ICARUS Technical Interface

Technical Interface ID PM13

Endpoint Name Modify an access policy

Endpoint Description Receives the request to modify an access policy

Component Policy Manager

Endpoint URL https://icarus_platform[:port]/api/v1/policy-manager/authorisation/policy/{id)

HTTP method PUT

Request Parameters • id: the id of the policy

Request Body In the case of single rule:
{
"type": "singleRule",
"access_rule": {
"rule_name": "string”,
"ruleOperator": "string",
"ruleOperand": "string",
"value": "string"
}

In the case of complex rules with AND or OR operand
{
"type": "complexRule",
"access_rule": {
"logicalOperator": "AND",
"segments": [
 {
 "type": "singlerule",
 "access_rule": {
 "rule_name": "string”,
 "ruleOperator": "string",
 "ruleOperand": "string",
 "value": "string"
 },
 "type": "singlerule",
 "access_rule": {
 "rule_name": "string”,
 "ruleOperator": "string",
 "ruleOperand": "string",
 "value": "string"
 }]
}

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

73 / 134

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-56: Policy Manager - delete access policy

ICARUS Technical Interface

Technical Interface ID PM14

Endpoint Name Delete an access policy

Endpoint Description Receives the request to delete an access policy

Component Policy Manager

Endpoint URL https://icarus_platform[:port]/api/v1/policy-manager/authorisation/policy/{id)

HTTP method DELETE

Request Parameters • id: the id of the policy

Request Body None

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-57: Policy Manager - authorise access request

ICARUS Technical Interface

Technical Interface ID PM15

Endpoint Name Authorise access request

Endpoint Description Receives the request to formulate an access control decision for an access
request

Component Policy Manager

Endpoint URL https://icarus_platform[:port]/api/v1/policy-manager/authorisation/authorise

HTTP method POST

Request Parameters None

Request Body {
 "object": controlledObject,
 "actor": " string ",
 "action": "string"
}

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

74 / 134

Table 3-58: Policy Manager - access control filter

ICARUS Technical Interface

Technical Interface ID PM16

Endpoint Name Access Control Filter

Endpoint Description Receives the request to formulate an access control filter from the Query Explorer
based on the authorisation of the user in order to be incorporated in the
produced query towards the query engine

Component Policy Manager

Endpoint URL https://icarus_platform[:port]/api/v1/policy-manager/filter/{id}

HTTP method POST

Request Parameters • id: the id of the user

Request Body N/A

Response Body An access control filter is returned in the form of “WHERE” clause else an error
message is returned.

3.12 ICARUS Storage and Indexing

3.12.1 Services Outline
The ICARUS Storage and Indexing component has a two-fold purpose: (a) to provide the

effective and efficient storage solutions that enable the storage operations of the platform

and to facilitate the data access operations of the rest of the components of the platform,

and (b) to provide the flexible and high-performance indexing operations of the platform that

support the data exploration and data query operations of the platform.

Both described functionalities are considered as core functionalities of the platform as they

form part of the platform’s backbone infrastructure, on top of which all the rest of the

components are operating in order to provide their functionalities. With regards to the

storage capabilities of the platform, two separate storage solutions are exploited for different

purposes, as presented also in the deliverable D4.1 of WP4. At first, the MongoDB storage

solution is exploited in order to handle the storage of the ICARUS platform’s data assets.

MongoDB is a well-established storage solution specialised in the effective storage and

management of large volume of data with multiple key features such as end-to-end security,

enhanced management operations and many more. The second storage solution is

PostgreSQL that is exploited in order to store the user data, the data metadata and all

operational data of the platform. PostgreSQL is also a well-known storage solution that is

extremely flexible and robust with advanced security and sophisticated mechanism for data

management. Since both storage solutions are providing core functionalities that are crucial

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

75 / 134

for the successful operation of all components, they are involved in all workflows described

in deliverable D3.2 in order to support the platform’s operations. Both solutions are offering

an extended list of interfaces that support their core role in the platform’s operations. These

interfaces accessed by the Data Handler component that acts as an intermediate for the data

access operations from the rest of the components of the platform.

With regards to the indexing capabilities of the platform the powerful open source enterprise

search platform Solr is exploited. Solr is offering a sophisticated and efficient indexing

mechanism that is utilised in order to index and support the query of information stored in

the ICARUS storage offering enhanced data exploration and advanced search functionalities.

Solr is offering a large list of interfaces as part of its software solution that are utilised mainly

by the Query Explorer component but also by other components depending on their needs.

3.12.2 Interfaces
The interfaces of both the storage solutions and the indexing and search platform are

provided by the MongoDB, PostgreSQL and Solr software solutions. Their documentation is

included in their official documentation and their description is out of scope of the current

deliverable.

3.13 Master Controller

3.13.1 Services Outline
The Master Controller is the component responsible for the enabling the “remote” execution

of a job, as instructed by the components residing on the Core ICARUS platform, to either the

On Premise Environment or the Secure and Private Space. The Master Controller is

establishing a connection with the OnPremise Worker and the SecureSpace Worker in order

to provide the set of instructions that should be executed locally by these workers utilising

the services that are deployed locally on these tiers.

As described in deliverable D3.2, the Master Controller component is involved in the Master

service that is involved in multiple workflows that require the cross-tier intercommunication

for the “remote” execution of jobs. The Master Controller is tightly connected with the

OnPremise Worker and the SecureSpace Worker in order to realise the Master/Worker

paradigm that enables the allocation of the jobs received by the master to the respective

worker based on the received instructions. As presented in the workflow describing the

intercommunication of the Master Controller with the OnPremise Worker and the

SecureSpace Worker in the Backend Ancillary services workflows in the deliverable D3.2, the

Master Controller is offering the interface that receives the instructions for the job execution

by the rest of the components of the platform. Upon receiving these instructions, the Master

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

76 / 134

Controller is routing them to the responsible worker in order to be executed locally based on

the intended recipient of the instructions. The Master Controller is also responsible for

monitoring the execution status of the assigned job by utilising the respective interface of the

workers. Furthermore, the Master Controller provides the interface that the workers are

utilising in order the report the completion of the assigned job. The Master Controller is

involved in the Data Preparation workflow, as described in deliverable D3.2, in which the set

instruction is compiled by each step of the workflow and are provided to Master Controller in

order to be dispatched to the OnPremise Worker. Furthermore, the Master Controller is

involved in the Data Analytics and Visualisations workflows during the ICARUS application

execution in order to transfer the selected data assets to the Secure and Private Space but

also to transfer the produced encrypted results back to the ICARUS Storage via the Data

Handler. Additionally, the Master Controller is involved in the cases where data assets or the

produced results of the analysis are downloaded locally or transferred in order to be

decrypted for visualisation purposes.

The details of the interfaces described above are presented in the following sub-section.

3.13.2 Interfaces
In the following tables the interfaces of the Master Controller are defined.

Table 3-59: Master Controller - receive instructions

ICARUS Technical Interface

Technical Interface ID MC01

Endpoint Name Receive new job instructions

Endpoint Description Receives the job instructions as compiled by the Core Platform components and
routes these instructions to the OnPremise Worker or the SecureSpace Worker

Component Master Controller

Endpoint URL https://icarus_platform[:port]/api/v1/master-controller/job

HTTP method POST

Request Parameters None

Request Body {
 "processId": "string",
 "filePath": "string",
 "complete": true,
 "completed": true,
 "configuration": "string",
 "created": {
 "date": 0,
 "day": 0,
 "hours": 0,
 "minutes": 0,
 "month": 0,
 "nanos": 0,

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

77 / 134

 "seconds": 0,
 "time": 0,
 "timezoneOffset": 0,
 "year": 0
 },
 "description": "string",
 "id": 0,
 "name": "string",
 "instructions": [{ }]
}

Response Body • 200 OK
• 400 Bad Request
• 404 Not Found

Table 3-60: Master Controller - receive job status

ICARUS Technical Interface

Technical Interface ID MC02

Endpoint Name Receive job completion status

Endpoint Description Receives the job completion acknowledgement as reported by the OnPremise
Worker or the SecureSpace Worker

Component Master Controller

Endpoint URL https://icarus_platform[:port]/api/v1/master-controller/job/{id}/status

HTTP method POST

Request Parameters • id: the job identifier

Request Body {
 "processId": "string",
 “status”: “string”
}

Response Body • 200 OK
• 400 Bad Request
• 404 Not Found

Table 3-61: Master Controller - transfer data

ICARUS Technical Interface

Technical Interface ID MC03

Endpoint Name Transfer data

Endpoint Description Handles the transferring request of the specified dataset from the core ICARUS
storage to a Secure and Private space as provided by the Data Handler. The
Master Controller informs the SecureSpace Worker for the dataset transfer, once
the file transfer is ready to be executed by the appropriate backend process
executed within the context of Data Handler.

Component Master Controller

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

78 / 134

Endpoint URL https://icarus_platform[:port]/api/v1/master-controller/transfer-data/{id}

HTTP method POST

Request Parameters • id: the dataset id

Request Body N/A

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-62: Master Controller - upload results

ICARUS Technical Interface

Technical Interface ID MC04

Endpoint Name Upload results from Secure and Private Space

Endpoint Description Handles the upload of the data analysis results in the ICARUS platform

Component Master Controller

Endpoint URL https://icarus_platform[:port]/api/v1/master-controller/upload-data/{id}

HTTP method POST

Request Parameters • id: the dataset id

Request Body Header: Content-Type: multipart/form-data;

{
 "dataname": "string",
 "id": "string",
 "user": "string"
}

Response Body • 200 OK
• 201 Created
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

3.14 OnPremise Worker and SecureSpace Worker

3.14.1 Services Outline
The OnPremise Worker and the SecureSpace Worker are the components that are

undertaking the local execution of the jobs as instructed by the Master Controller, utilising

the deployed services on their local running environment.

As described in deliverable D3.2, the OnPremise Worker and the SecureSpace Worker are

involved in the Worker service that is a complementary service of the Master service and is

involved in multiple workflows that realise the “remote” job execution. As explained also in

section 3.13, both workers are tightly connected with the Master Controller and following the

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

79 / 134

Master/Worker paradigm, the workers receive the instructions from the Master Controller

and execute the assigned job. Following the workflow that was presented in the Ancillary

Backend services workflows, the workers provide the interface in order to receive the set of

instructions from the Master Controller and interpret these instructions in order to request

the execution of the local services via their respective interfaces. Additionally, the workers

are monitoring the execution status of the assigned tasks from the job via the dedicated

interfaces of the selected services and provide an interface for the Master Controller to obtain

this status. Finally, the workers provide an interface that the local services are utilising in

order to report the completion of their task. Once all tasks of the job are completed, the

workers utilise the interface provided by the Master Controller to report the job completion.

As with the Master Controller, the OnPremise Worker is involved in the Data Preparation

workflow and receives the compiled set of instructions that is interpreted and executed by

the respective local services. Furthermore, the SecureSpace Worker is involved in the Data

Analytics and Visualisations workflows for the transfer of the utilised data assets during the

ICARUS application execution and in the transferring of the produced encrypted results once

the data analysis is completed. Finally, both workers are involved in the cases where data

assets are downloaded locally and the SecureSpace Worker is additionally involved in the

transferring of the data asset during the visualisation process.

The details of the interfaces described above are presented in the following sub-section.

3.14.2 Interfaces
In the following tables the interfaces of the On Premise Worker and SecureSpace Worker are
defined.

Table 3-63: On Premise Worker and SecureSpace Worker - receive instructions

ICARUS Technical Interface

Technical Interface ID WO01

Endpoint Name Receive new job instructions by the Master Controller

Endpoint Description Receives the job instructions from the Master Controller and distribute the
execution to the local services

Component OnPremise Worker, SecureSpace Worker

Endpoint URL https://hostname[:port]/v1/workers/job

HTTP method POST

Request Parameters None

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

80 / 134

Request Body {
 "processId": "string",
 "filePath": "string",
 "complete": true,
 "completed": true,
 "configuration": "string",
 "created": {
 "date": 0,
 "day": 0,
 "hours": 0,
 "minutes": 0,
 "month": 0,
 "nanos": 0,
 "seconds": 0,
 "time": 0,
 "timezoneOffset": 0,
 "year": 0
 },
 "description": "string",
 "id": 0,
 "name": "string",
 "instructions": [{ }]
}

Response Body • 200 OK
• 400 Bad Request
• 404 Not Found

Table 3-64: On Premise Worker and SecureSpace Worker - retrieve job status

ICARUS Technical Interface

Technical Interface ID WO02

Endpoint Name Retrieve job status

Endpoint Description Receives the job status per task as reported by the corresponding services that
have undertaken the tasks for a job

Component OnPremise Worker, SecureSpace Worker

Endpoint URL https://hostname[:port]/v1/workers/job/{id}/status

HTTP method GET

Request Parameters • id: the job identifier

Request Body {
 "processId": "string",
 "status": { "mapping" : "string",
 "cleaning": "string",
 "encryption": "string",
 "anonymisation": "string"
}

Response Body • 200 OK
• 400 Bad Request
• 404 Not Found

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

81 / 134

Table 3-65: On Premise Worker and SecureSpace Worker - receive task status

ICARUS Technical Interface

Technical Interface ID WO03

Endpoint Name Receive task completion status

Endpoint Description Receives the task completion acknowledgement as reported by the
corresponding service that has undertaken the task for a job

Component OnPremise Worker, SecureSpace Worker

Endpoint URL https://hostname[:port]/v1/workers/job/{id}/task/{task_id}/status

HTTP method POST

Request Parameters • id: the job identifier
• task_id: the task identifier

Request Body {
 "processId": "string",
 “taskId : “string”,
 “status”: “string”
}

Response Body • 200 OK
• 400 Bad Request
• 404 Not Found

Table 3-66: On Premise Worker and SecureSpace Worker - upload results

ICARUS Technical Interface

Technical Interface ID WO04

Endpoint Name Upload results from Secure and Private Space

Endpoint Description Handles the upload of the results of the data analysis in the ICARUS platform.
Internally, the Master Controller is invoked in order to setup the internal
procedure for the data transfer of the results and their storage in the ICARUS
platform.

Component SecureSpace Worker

Endpoint URL https://hostname[:port]/v1/workers/upload-data/{id}

HTTP method POST

Request Parameters • id: the dataset id

Request Body Header: Content-Type: multipart/form-data;

{
 "dataname": "string",
 "id": "string",
 "user": "string"
}

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

82 / 134

Response Body • 200 OK
• 201 Created
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-67: On Premise Worker and SecureSpace Worker – receive data

ICARUS Technical Interface

Technical Interface ID WO05

Endpoint Name Receive data

Endpoint Description Handles the transferring request of the specified dataset from the core ICARUS
storage to a Secure and Private space as provided by the Master Controller. The
SecureSpace Worker is informed by the Master Controller for the dataset transfer
and the appropriate backend process is executed for dataset transfer.

Component SecureSpace Worker

Endpoint URL https://hostname[:port]/v1/workers/transfer-data/{id}

HTTP method POST

Request Parameters • id: the dataset id

Request Body N/A

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

3.15 Query Explorer

3.15.1 Services Outline
As described in deliverables D3.1 and D3.2, the Query Explorer is the component that offers

advanced dataset exploration and discoverability functionalities to the users of the ICARUS

platform. It should be noted that the processes offered by the component extend beyond

typical search functionalities found in other data marketplaces and relevant platforms, due

to the complexities introduced by the fact that datasets are uploaded partially encrypted in

ICARUS. The Query Explorer is the main acting component in the Data Exploration workflows

presented in deliverable D3.2, which commonly also act as an entry point to the Asset

Brokerage workflows.

The component enables users to define search criteria in a flexible manner and thus facilitates

the discoverability of potentially interesting datasets, dataset subsets and dataset

combinations. Specifically, it allows a user to:

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

83 / 134

• select the fields of the common ICARUS data model that should be present in the

datasets that will be included in the results,

• express and apply filters based on the metadata of the datasets that will be included

in the results,

• express and apply filters on the actual data of the datasets that will be included in the

results. These filters are only available for unencrypted data columns in accordance

also to the instructions of the dataset provider regarding including or excluding them

from the dataset index.

The Query Explorer transforms the defined user selections and filters into a Solr query, which

is seamlessly combined with an appropriate access policy filter that is applied on the Solr

query (with the help of the Policy Manager), to ensure that the search will be performed only

on datasets that the current user in the current context is eligible to receive as results

(candidates for acquisition). Finally, the component is also responsible for showing the results

to the user in an intuitive and comprehensive manner.

The details of the interfaces described above are presented in the following sub-section.

3.15.2 Interfaces
Query Explorer leverages the Solr API, which is out of scope to be documented here.

Therefore the interfaces are documented below in a higher level of abstraction. It should be

noted however that the invocation of the query creation service results in the background in

the invocation of other services that ultimately result in the creation and execution of a Solr

query. One of these services invoked in the background is Table 3-58 documented in Section

3.11.2.

Table 3-68: Query Explorer - create and execute query

ICARUS Technical Interface

Technical Interface ID QE01

Endpoint Name Create and execute a query

Endpoint Description Create a new query based on selected fields and defined filters, execute it and
return the results

Component Query Explorer

Endpoint URL https://icarus_platform[:port]/api/v1/query/

HTTP method POST

Request Parameters N/A

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

84 / 134

Request Body A set of fields and filters as set per the requestor:
{

 “fields”: [{ }],

 “filters”: [{ }]

}

Response Body A set of results from the query execution on the respective Solr API:
{

 “results”:[]

}

Table 3-69: Query Explorer - get query definition

ICARUS Technical Interface

Technical Interface ID QE02

Endpoint Name Get query definition

Endpoint Description Get the definition of a specific query (i.e. its fields and filters)

Component Query Explorer

Endpoint URL https://icarus_platform[:port]/api/v1/query/{id}/

HTTP method GET

Request Parameters • Id: the id of the query

Request Body N/A

Response Body A set of fields and filters as set in the query creation:
{

 “fields”: [{ }],

 “filters”: [{ }]

}

Table 3-70: Query Explorer - get updated query results

ICARUS Technical Interface

Technical Interface ID QE03

Endpoint Name Get updated query results

Endpoint Description Re-execute a specific query and return the updated results

Component Query Explorer

Endpoint URL https://icarus_platform[:port]/api/v1/query/{id}/results

HTTP method GET

Request Parameters • Id: the id of the query

Request Body N/A

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

85 / 134

Response Body A set of results from the query execution on the respective Solr API:
{

 “results”:[]

}

Table 3-71: Query Explorer - delete query

ICARUS Technical Interface

Technical Interface ID QE04

Endpoint Name Delete query

Endpoint Description Delete a specific query

Component Query Explorer

Endpoint URL https://icarus_platform[:port]/api/v1/query/{id}/

HTTP method DELETE

Request Parameters • Id: the id of the query

Request Body N/A

Response Body • 200 OK
• 400 Bad Request
• 404 Not Found

Table 3-72: Query Explorer - get query history

ICARUS Technical Interface

Technical Interface ID QE05

Endpoint Name Get query history for user

Endpoint Description Get all saved queries of the user

Component Query Explorer

Endpoint URL https://icarus_platform[:port]/api/v1/query/user/{id}/all

HTTP method GET

Request Parameters • id: the user id

Request Body N/A

Response Body {

 “queries”: []

}

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

86 / 134

3.16 Recommender

3.16.1 Services Outline
The Recommender is the component responsible for providing accurate suggestions of data

assets that exist in the ICARUS repository to the stakeholders, based on their preferences. As

described in deliverable D3.2, the Recommender is involved in the Data Recommendation

service that involves two distinct phases: the offline training and the execution phases. In

each phase, the Recommender interacts with various other components via REST APIs,

provided by the related components.

During the offline training phase, the Recommender interacts with the Data Handler, that is

offering a layer above the ICARUS storage, in order to collect relevant information from the

ICARUS Storage about the data assets and the users’ behaviour that is stored there. Accessing

such information enables the Recommender to accomplish one of its main functionalities,

which is to improve its recommendations by re-training its algorithm periodically. More

precisely, the Recommender collects from the ICARUS Storage, again via the Data Handler,

the users’ IDs and the users’ history (i.e. searches, views, favourites, purchases) in order to

train its model for providing user-based recommendations of data assets to the users. In

addition to this, the Recommender collects the data assets’ IDs and their categories (e.g.

weather, flight delays, etc.) in order to be trained for providing a set of recommended data

assets using an item-based approach.

The execution phase aims at providing recommendations of data assets to a specific user and

it is triggered when a stakeholder uses the ICARUS Data Exploration service which is handled

by the Query Explorer component, so as to search for data assets. The Recommender’s REST

API is called from the Query Explorer, receiving as parameters the user’s ID and the data

assets’ IDs that the user is currently viewing. In addition, the Recommender interacts with the

ICARUS Storage, via the Data Handler, in order to collect the user’s preferences which are

manually set by each user in their profiles, as well as semantic metadata of the data assets

related to their entities which are derived from the ICARUS Ontology. Finally, after collecting

and processing the previously mentioned information, the Recommender responds to the

Query Explorer with a list of recommended data assets’ IDs.

As described above, the Recommender is exploiting the interfaces of the Data Handler in

order to retrieve the required information for its operations. The Recommender exposes one

interface to the Query Explorer in order to generate the user-specific recommendations that

will be offered. The details of this interface is presented in the following sub-section.

3.16.2 Interfaces
In the following table the interface of the Recommender is defined.

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

87 / 134

Table 3-73: Recommender - data assets recommendations

ICARUS Technical Interface

Technical Interface ID REC01

Endpoint Name Data assets recommendations.

Endpoint Description Generates recommendations of data assets for a specific user.

Component Recommender

Endpoint URL https://icarus_platform[:port]/api/v1/recommender/

HTTP method POST

Request Parameters N/A

Request Body The request body is in JSON format and contains the user ID of the user (type:
“string”) that will receive the recommendations and a list data assets IDs (the list
can be empty or can have multiple “strings” that represent data assets IDs). For
example:
{
 "user_id": "U12345678",
 "datasets_id": [
 "DS67438434",
 "DS05855493",
 …
]
}

Response Body The response body is in JSON format and contains a list of the recommended data
assets IDs (each ID is of type “string”). For example:
{
 "recommended_datasets": [
 "DS95855433",
 "DS99882437",
 "D550087652",
 …
]
}

3.17 Analytics and Visualisation Workbench

3.17.1 Services Outline
The Analytics and Visualisation Workbench is the component that enables the design,

execution and monitoring of the data analytics workflows within the ICARUS platform. To

meet its goal, the Analytics and Visualisation Workbench is handling several aspects that span

from the design of an ICARUS application, to the execution of this application and the

visualisation of the produced results in a meaningful way.

As described in deliverables D3.1 and D3.2, the Analytics and Visualisation Workbench is

involved in the following main functionalities of the ICARUS platform: (a) the creation of a

new ICARUS application which a set of defined datasets the user owns or has legitimate

access, data analysis algorithms with their corresponding parameters, and a set of selected

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

88 / 134

visualisations, (b) the immediate and/or the scheduled execution of an ICARUS application,

(c) the generation of visualisations of the produced results from the execution of the ICARUS

application and (d) the export of the produced results. Therefore, the Analytics and

Visualisation Workbench is the key part of the Data Analytics and Visualisations workflow and

provides all the functionalities that compose the Data Analytics Service as presented in

deliverable D3.2.

Behind the scenes, the Analytics and Visualisation Workbench consists of three fundamental

sub-components that are integrated in order to provide the aforementioned functionalities:

(a) the simple and intuitive user interface that is offered to the users of the ICARUS platform,

(b) the repository for the implemented algorithms and (c) a microservice that exposes a

RESTful API that enables the mediation between the frontend and the various backend

components that the Analytics and Visualisation Workbench interacts with such as the Job

Scheduler and Execution Engine, the Resource Orchestrator, the Data Handler and the BDA

Application Catalogue.

During the creation of the ICARUS application, the Analytics and Visualisation Workbench

interacts with the BDA Application Catalogue, as depicted in the ICARUS application design

workflow which is documented in deliverable D3.2, in order retrieve the existing ICARUS

applications or store the newly designed ICARUS application and its metadata. The Analytics

and Visualisation Workbench exploits the interfaces provided by the BDA Application

Catalogue in order to perform the whole lifecycle management of the ICARUS applications.

During the ICARUS application execution, the Analytics and Visualisation Workbench is

interacting with the Resource Orchestrator and the Job Scheduler backend components, as

depicted in the ICARUS application execution workflow which is documented also in

deliverable D3.2. Specifically, the Analytics and Visualisation Workbench firstly ensures the

existence of the Secure and Private Space by interacting with the Resource Orchestrator and

its provided interfaces. Afterwards, the Analytics and Visualisation Workbench interacts with

the Job Scheduler in order to either initiate the ICARUS application execution or to schedule

its execution via the respective interfaces offered by the Job Scheduler. Once the results of

the execution are available, the Analytics and Visualisation Workbench is informed and they

are made available to the user for visualisation purposes.

The Analytics and Visualisation Workbench is offering the generation of a variety of

visualisations on top of the produced results or the option to export and download the results

locally. During this process, the Analytics and Visualisation Workbench is interacting with the

Data Handler and the BDA Application Catalogue, as depicted in the results visualisation

workflow that is documented also in deliverable D3.2. In case of the visualisation generation,

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

89 / 134

the Analytics and Visualisation Workbench after receiving the visualisation configuration from

the user, it requests from the Data Handler the required unencrypted results via the provided

interface. The Data Handler undertakes the orchestration of the process, as it interacts with

the Policy Manager to validate the access request, as well as with the Master Controller in

order to initiate the decryption process that is executed within the Secure and Private Space.

Finally, it provides the results to the Analytics and Visualisation Workbench that generates

the requested visualisation and updates the application’s visualisation parameters in the BDA

Application Catalogue. In case of the export or downloading of the produced results, the

Analytics and Visualisation Workbench requests from the Data Handler the preparation of the

results and the download process is executed followed by the respective decryption process.

As described above, the Analytics and Visualisation Workbench is mainly providing the user

interface that is orchestrating the rest of the components in order to provide the described

functionalities. Thus, the Analytics and Visualisation Workbench is mainly exploiting the

interfaces of the rest of the components. However, internally a set of interfaces is provided

by the component in order to facilitate its internal operations. These operations include the

lifecycle management of the implemented data analytics algorithms and the ICARUS

applications with the help of the BDA Applications Catalogue, as well as the interactions with

the Job Scheduler for the execution or scheduled execution of the ICARUS applications.

The details of the internal interfaces offered by the Analytics and Visualisation Workbench,

as described above, are presented in the following sub-section.

3.17.2 Interfaces
In the following tables the interfaces of the Analytics and Visualisation Workbench are
defined.

Table 3-74: Analytics and Visualisation Workbench – register algorithm

ICARUS Technical Interface

Technical Interface ID AVW01

Endpoint Name Registration Controller / Algorithms

Endpoint Description It allows to register algorithms in the repository and to obtain a list of the
registered algorithms. The algorithms will be used to build up the ICARUS
Applications.

Component Analytics and Visualization Workbench

Endpoint URL https://icarus_platform[:port]/api/v1/analytics/registration/algorithms

HTTP method GET, POST

Request Parameters None

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

90 / 134

Request Body {
 “catalogues”: list,
 “area”: area,
 “name”: "string",
 “metrics”: set,
 “mode”: mode,
 “version”: "string",
 “description”: "string",
 “properties”: "string",
 “url”: "string"
}

Response Body In case of POST:

{
 “algorithm”: {
 “id”: long,
 “catalogues”: list,
 “area”: area,
 “name”: "string",
 “metrics”: set,
 “mode”: mode,
 “version”: "string",
 “description”: "string",
 “properties”: set,
 “url”: "string"
 }
}

In case of GET returns a list of Algorithms.

Table 3-75: Analytics and Visualisation Workbench – get, delete algorithm

ICARUS Technical Interface

Technical Interface ID AVW02

Endpoint Name Registration Controller / Algorithms

Endpoint Description It allows to obtain or delete a registered algorithm from the repository.
Component Analytics and Visualization Workbench

Endpoint URL https://icarus_platform[:port]/api/v1/analytics/registration/algorithms/{id}
HTTP method DELETE, GET
Request Parameters • Id: the unique identifier of the registered algorithm

Request Body None

Response Body In case of GET:

{
 “algorithm”: {
 “id”: long,
 “catalogues”: list,
 “area”: area,
 “name”: “string”,
 “metrics”: set,

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

91 / 134

 “mode”: mode,
 “version”: “string”,
 “description”: “string”,
 “properties”: set,
 “url”: “string”
 }
}

None in case of DELETE.

Table 3-76: Analytics and Visualisation Workbench – register application

ICARUS Technical Interface

Technical Interface ID AVW03

Endpoint Name Registration of Applications

Endpoint Description It allows to register BDA Applications interacting with the BDA Application
Catalogue

Component Analytics and Visualization Workbench

Endpoint URL https://icarus_platform[:port]/api/v1/analytics/registration/applications
HTTP method POST
Request Parameters None

Request Body {
 “name”: "string",
 “description”: "string",
 “created”: date,
 “updated”: date,
 “metadata”: {
 "id": 1,
 "categories": ["string", "string"],
 "tags": "string",
 "accessibility": “string”,
 "version": "string",
 "license": "string",

 "privacylevel": "string",

 "allowedmodify": true,
 "allowedexcept": true,
 "allowedannotate": true,
 "allowedaggregate": true,
 "attribution": "string",
 "reproduction": "string",
 "distribution": "string",
 "targetpurpose": "string",
 "targetindustry": "string",

 "organizationcategoryrecontext": "string",
 "calculationscheme": "string",

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

92 / 134

 "amount": "string",
 "paymentmethod": "string",
 "policy": "string",
 ...
 },
 “dataset”: {
 "id":1,
 "type":"input",
 "name":"string"
 ...
 },
 “workflow”: {
 “id”: "string",
 ”name"string",
 “definition”:” "string”,
 "algorithms":[

 {
 "id": "string",
 "category": "string",
 "name": "string",
 "version": "string",
 "description": "string",
 "framework": {
 "id": "string",
 "name": "string",
 "version": "string"
 },
 "properties": [...],
 "url": "string"
 }, { …}
]

 },

 “user”: user

}

Response Body 200 OK and the same information as with the request body for confirmation

Table 3-77: Analytics and Visualisation Workbench – get applications

ICARUS Technical Interface

Technical Interface ID AVW04

Endpoint Name Retrieve Applications

Endpoint Description It allows to obtain a list of the registered BDA applications.

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

93 / 134

Component Analytics and Visualization Workbench

Endpoint URL https://icarus_platform[:port]/api/v1/analytics/registration/applications
HTTP method GET
Request Parameters None

Request Body N/A

Response Body [{

 “name”: "string",

 “description”: "string",

 “created”: date,

 “updated”: date,

 “metadata”: {

 "id": 1

 "categories": ["string", "string"],
 "tags": "string",
 "accessibility": “string”,
 "version": "string",
 "license": "string",

 "privacylevel": "string",

 "allowedmodify": true,

 "allowedexcept": true,

 "allowedannotate": true,

 "allowedaggregate": true,

 "attribution": "string",

 "reproduction": "string",

 "distribution": "string",

 "targetpurpose": "string",

 "targetindustry": “string”,

 "organizationcategoryrecontext": "string",

 "calculationscheme": "string",

 "amount": "string",

 "paymentmethod": "string",

 "policy": “policy”,

 ...

 },

 “dataset”: {

 "id":1,

 "type":"input",

 "name":"string"

 ...

 },

 “workflow”: {

 “id”: "string",

 ”name": “string",

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

94 / 134

 “definition”: "string”,

 "algorithms": [

 {

 "id": "string",

 "category": "string",

 "name": "string",

 "version": "string",

 "description": "string",

 "framework": {

 "id": "string",

 "name": "string",

 "version": "string"

 },

 "properties": [...],

 "url": "string"

 }, { …}

]

 },

 “user”: “string”

}]

Table 3-78: Analytics and Visualisation Workbench – get application

ICARUS Technical Interface

Technical Interface ID AVW05

Endpoint Name Get Application

Endpoint Description It allows to obtain a registered BDA application.
Component Analytics and Visualization Workbench

Endpoint URL https://icarus_platform[:port]/api/v1/analytics/registration/applications/{id}
HTTP method GET

Request Parameters • Id: the unique identifier of the registered application

Request Body N/A

Response Body {

 “application”: {

 {

 “name”: "string",

 “description”: "string",

 “created”: date,

 “updated”: date,

 “metadata”: {

 "id": 1

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

95 / 134

 "categories": ["string", "string"],
 "tags": "string",
 "accessibility": “string”,
 "version": "string",
 "license": "string",

 "privacylevel": "string",

 "allowedmodify": true,

 "allowedexcept": true,

 "allowedannotate": true,

 "allowedaggregate": true,

 "attribution": "string",

 "reproduction": "string",

 "distribution": "string",

 "targetpurpose": "string",

 "targetindustry": “string”,

 "organizationcategoryrecontext": "string",

 "calculationscheme": "string",

 "amount": "string",

 "paymentmethod": "string",

 "policy": “string”,

 ...

 },

 “dataset”: {

 "id":1,

 "type": "input",

 "name": "string",

 ...

 },

 “workflow”: {

 “id”: "string",

 ”name”: "string",

 “definition”: "string”,

 "algorithms": [

 {

 "id": "string",

 "category": "string",

 "name": "string",

 "version": "string",

 "description": "string",

 "framework": {

 "id": "string",

 "name": "string",

 "version": "string"

 },

 "properties": [“..”, “…”],

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

96 / 134

 "url": "string"

 }, { …}

]

 },

 “user”: user

}

Table 3-79: Analytics and Visualisation Workbench – delete application

ICARUS Technical Interface

Technical Interface ID AVW06

Endpoint Name Delete an Application

Endpoint Description It allows to delete a registered BDA application.
Component Analytics and Visualization Workbench

Endpoint URL https://icarus_platform[:port]/api/v1/analytics/registration/applications/{id}
HTTP method DELETE

Request Parameters • Id: the unique identifier of the registered application

Request Body N/A

Response Body • 200 OK
• 400 Bad Request
• 404 Not Found

Table 3-80: Analytics and Visualisation Workbench – schedule job

ICARUS Technical Interface

Technical Interface ID AVW07

Endpoint Name Scheduling Controller Specific Job

Endpoint Description It allows to interact with the Job Scheduler and Execution engine deployed within
the Secure and Private Space. The services behind this API adds business logic to
retrieve the proper destination of the request.

Component Analytics and Visualization Workbench

Endpoint URL https://icarus_platform[:port]/api/v1/analytics/scheduling/entries/{id}

HTTP method GET, PUT, DELETE

Request Parameters • Id: the unique identifier of the registered job

Request Body {
 “name”: string,
 “application_id”: long,
 “user_id”: integer,
 “timezone”: “string”,
 “recurrent”: boolean,

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

97 / 134

 “cron_exp”: “string”,
 “start_time”: datetime,
 “end_time”: datetime
}

Response Body {
 “name”: “string”,
 “application_id”: LONG,
 “user_id”: INTEGER,
 “timezone”: “string”,
 “recurrent”: BOOLEAN,
 “cron_exp”: “string”,
 “start_time”: DATETIME,
 “end_time”: DATETIME
}

Table 3-81: Analytics and Visualisation Workbench – add job

ICARUS Technical Interface

Technical Interface ID AVW08

Endpoint Name Scheduling Controller Add job

Endpoint Description It allows to interact with the Job Scheduler and Execution engine deployed within
the secure and private space. The services behind this API adds business logic to
retrieve the proper destination of the request.

Component Analytics and Visualization Workbench

Endpoint URL https://icarus_platform[:port]/api/v1/analytics/scheduling/entries

HTTP method POST
Request Parameters None

Request Body {
 “name”: “string”,
 “application_id”: long,
 “user_id”: long,
 “timezone”: “string”,
 “recurrent”: boolean,
 “cron_exp”: “string”,
 “start_time”: datetime,
 “end_time”: datetime
}

Response Body {
 “name”: “string”,
 “application_id”: long,
 “user_id”: long,
 “timezone”: “string”,
 “recurrent”: boolean,
 “cron_exp”: “string”,
 “start_time”: datetime,
 “end_time”: datetime
}

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

98 / 134

Table 3-82: Analytics and Visualisation Workbench – get all jobs

ICARUS Technical Interface

Technical Interface ID AVW09

Endpoint Name Scheduling Controller – Get Jobs

Endpoint Description It allows to interact with the Job Scheduler and Execution engine deployed within
the secure and private space. The services behind this API adds business logic to
retrieve the proper destination of the request.

Component Analytics and Visualization Workbench

Endpoint URL https://icarus_platform[:port]/api/v1/analytics/scheduling/entries

HTTP method GET
Request Parameters N/A

Request Body N/A

Response Body [
 {
 “id”: long,
 “name”: “string”,
 “application_id”: long,
 “user_id”: long,
 “recurrent”: boolean,
 “cron_exp”: “string”,
 “created_time”: datetime,
 “updated_time”: datetime
 }, ...
]

3.18 BDA Application Catalogue

3.18.1 Services Outline
The BDA Application Catalogue is a complementary component providing the repository

where all ICARUS applications are stored, accessed and maintained. The BDA Application

Catalogue enables the reuse, update and sharing of these applications (under a license

defined by the owner of the application) facilitating the functionalities offered to the users of

the platform through the user interface of the Analytics and Visualisation Workbench.

As described before, an ICARUS application is designed within the context of Data Analytics

service via the user interface offered by the Analytics and Visualisation Workbench and

constitutes a set metadata for the selected datasets, the selected data analytics algorithms

and the selected visualisation types and their parameters. The BDA Application Catalogue

provides a group of CRUD RESTful-API interfaces for the purpose of managing these ICARUS

Applications. In accordance with the workflows described in the deliverable D3.2, the BDA

Application Catalogue is involved in the ICARUS application design workflow providing the

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

99 / 134

repository where the designed application is stored and in the results visualisation workflow

in order to store the updates on the application. In general, the BDA Application Catalogue is

interacting only with the Analytics and Visualisation Workbench and is involved only in the

Data Analytics service.

The details of the interfaces offered by the BDA Application Catalogue, as described above,

are presented in the following sub-section.

3.18.2 Interfaces
In the following tables the interfaces of the Analytics and Visualisation Workbench are
defined.

Table 3-83: BDA Application Catalogue - application creation

ICARUS Technical Interface

Technical Interface ID AC01

Endpoint Name Application Creation

Endpoint Description The service allows to add a new ICARUS Application

Component BDA Application Catalogue

Endpoint URL https://icarus_platform[:port]/api/v1/app-catalogue/applications

HTTP method POST

Request Parameters N/A

Request Body {
 “name”: "string",
 “description”: "string",
 “created”: date,
 “updated”: date,
 “metadata”: {
 "id": 1
 "categories": ["string", "string"],
 "tags": "string",
 "accessibility": “string”,
 "version": "string",
 "license": "string",

 "privacylevel": "string",

 "allowedmodify": true,
 "allowedexcept": true,
 "allowedannotate": true,
 "allowedaggregate": true,
 "attribution": "string",
 "reproduction": "string",
 "distribution": "string",
 "targetpurpose": "string",

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

100 / 134

 "targetindustry": “string”,

 "organizationcategoryrecontext": "string",
 "calculationscheme": "string",
 "amount": "string",
 "paymentmethod": "string",
 "policy": “string”,
 ...
 },
 “dataset”: {
 "id":1,
 "type": "input",
 "name": "string"
 ...
 },
 “workflow”: {
 “id”: "string",
 ”name": “string",
 “definition”: "string”,
 "algorithms": [

 {
 "id": "string",
 "category": "string",
 "name": "string",
 "version": "string",
 "description": "string",
 "framework": {
 "id": "string",
 "name": "string",
 "version": "string"
 },
 "properties": [...],
 "url": "string"
 }, { …}
]

 },

 “user”: “string”

}

Response Body • 200 OK
• 201 Created
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-84: BDA Application Catalogue - get application

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

101 / 134

ICARUS Technical Interface

Technical Interface ID AC02

Endpoint Name Applications

Endpoint Description The service allows to get a specific ICARUS Application

Component BDA Application Catalogue

Endpoint URL https://icarus_platform[:port]/api/v1/app-catalogue/applications/{id}
HTTP method GET
Request Parameters • id : The id of the application that has to be get

Request Body N/A

Response Body {
 “name”: "string",
 “description”: "string",
 “created”: date,
 “updated”: date,
 “metadata”: {
 "id": 1
 "categories": ["string", "string"],
 "tags": "string",
 "accessibility": “string”,
 "version": "string",
 "license": "string",

 "privacylevel": "string",

 "allowedmodify": true,
 "allowedexcept": true,
 "allowedannotate": true,
 "allowedaggregate": true,
 "attribution": "string",
 "reproduction": "string",
 "distribution": "string",
 "targetpurpose": "string",
 "targetindustry": “string”,

 "organizationcategoryrecontext": "string",
 "calculationscheme": "string",
 "amount": "string",
 "paymentmethod": "string",
 "policy": “string”,
 ...
 },
 “dataset”: {
 "id":1,
 "type": "input",

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

102 / 134

 "name": "string",
 ...
 },
 “workflow”: {
 “id”: "string",
 ”name": “string",
 “definition”: "string”,
 "algorithms": [

 {
 "id": "string",
 "category": "string",
 "name": "string",
 "version": "string",
 "description": "string",
 "framework": {
 "id": "string",
 "name": "string",
 "version": "string"
 },
 "properties": [...],
 "url": "string"
 }, { …}
]

 },

 “user”: “string”

}

Table 3-85: BDA Application Catalogue - update application

ICARUS Technical Interface

Technical Interface ID AC03

Endpoint Name Applications

Endpoint Description The service allows to update a specific ICARUS Application

Component BDA Application Catalogue

Endpoint URL https://icarus_platform[:port]/api/v1/app-catalogue/applications/{id}
HTTP method PUT
Request Parameters • id: The id of the application that has to be update

Request Body {
 “name”: "My BDA Application edited",
 “description”: "Free Text",
 “created”: date,
 “updated”: date,

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

103 / 134

 “metadata”: {
 "id": 1,
 "categories": ["string", "string"],
 "tags": "string",
 "accessibility": “string”,
 "version": "string",
 "license": "string",

 "privacylevel": "string",

 "allowedModify": True,
 "allowedExcept": True,
 "allowedAnnotate": True,
 "allowedAggregate": True,
 "attribution": "Allowed",
 "reproduction": "Allowed",
 "distribution": "Allowed",
 "targetPurpose": "Academic/Scientific",
 "targetIndustry": “string”,

 "organizationCategoryReContext": "Allowed",
 "calculationScheme": "string”,
 "amount": “100,00”,
 "paymentMethod": "BankTransfer",
 "policy": “string”,
 ...
 },
 “dataSet”: {
 "id":1,
 "type": "INPUT",
 "name": "avio.csv",
 ...
 },
 “workflow”: {
 “id”:1,
 ”name”: “My BDA Application Workflow”,
 “definition”: “spark-kmeans-model | spark-predictive-analytics”,
 "algorithms": [

 {
 "id": 51,
 "category": "MACHINE-LEARNING",
 "name": "spark-kmeans-model",
 "version": "1.0.1",
 "description": "Task to train a KMeans model with Spark ML",
 "framework": {
 "id": 5,
 "name": "Spark",
 "version": "2.4.0"

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

104 / 134

 },
 "properties": [...],
 "url": "docker://nodo1.toreador.org:8082/spark-kmeans-model:1.0.0"
 },
 {
 "id": 53,
 "category": "MACHINE-LEARNING",
 "name": "spark-predictive-analytics",
 "version": "1.0.0",
 "description": "Task to make prediction using a trained model",
 "framework": {
 "id": 5,
 "name": "Spark",
 "version": "2.4.0"
 },

"properties": [...],
 "url": "docker://nodo1.toreador.org:8082/spark-predictive-
analytics:1.0.0"
 }
]

 },

 “user”: “string”

}

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-86: BDA Application Catalogue - delete application

ICARUS Technical Interface

Technical Interface ID AC04

Endpoint Name Applications

Endpoint Description The service allows to delete a specific ICARUS Application

Component BDA Application Catalogue

Endpoint URL https://icarus_platform[:port]/api/v1/app-catalogue/applications/{id}
HTTP method DELETE
Request Parameters • id: The id of the application that has to be deleted

Request Body N/A

Response Body N/A

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

105 / 134

Table 3-87: BDA Application Catalogue - get all applications

ICARUS Technical Interface

Technical Interface ID AC05

Endpoint Name Applications

Endpoint Description The service allows to list the ICARUS Applications.
Component BDA Application Catalogue

Endpoint URL https://icarus_platform[:port]/api/v1/app-catalogue/applications
HTTP method GET
Request Parameters N/A

Request Body N/A

Response Body [{

 “name”: "string",
 “description”: "string",
 “created”: date,
 “updated”: date,
 “metadata”: {
 "id": 1,
 "categories": ["string", "string"],
 "tags": "string",
 "accessibility": “string”,
 "version": "string",
 "license": "string",

 "privacylevel": "string",

 "allowedmodify": true,
 "allowedexcept": true,
 "allowedannotate": true,
 "allowedaggregate": true,
 "attribution": "string",
 "reproduction": "string",
 "distribution": "string",
 "targetpurpose": "string",
 "targetindustry": “string”

 "organizationcategoryrecontext": "string",
 "calculationscheme": "string”,
 "amount": "string",
 "paymentmethod": "string",
 "policy": “string”,
 ...
 },
 “dataset”: {
 "id":1,

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

106 / 134

 "type": "input",
 "name": "string",
 ...
 },
 “workflow”: {
 “id”: "string",
 ”name”: "string",
 “definition”: "string”,
 "algorithms": [

 {
 "id": "string",
 "category": "string",
 "name": "string",
 "version": "string",
 "description": "string",
 "framework": {
 "id": "string",
 "name": "string",
 "version": "string"
 },
 "properties": [...],
 "url": "string"
 }, { …}
]

 },

 “user”: “string”

}]

3.19 Resource Orchestrator

3.19.1 Services Outline
The Resource Orchestrator is the component responsible for the deployment of the Secure

and Private Space that is providing the “sandboxed” environment where the data analysis is

performed in a secure and isolated manner. To this end, the Resource Orchestrator is

responsible for the provisioning and management of the Secure and Private Spaces by

connecting to the underlying infrastructure in order to perform monitoring and management

of the available resources, to provision the dedicated virtual machines, as well as to deploy

and monitor the required services of the Secure and Private Spaces.

As described in deliverable D3.2, the Resource Orchestrator is involved in the Resource

Orchestration service that is included in the Secure and Private Space provisioning / stoppage

workflow included in the Backend Ancillary services workflows. In particular, the Resource

Orchestrator is interacting with the Analytics and Visualisation Workbench in order to

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

107 / 134

provision the set of virtual machines that are required for the Secure and Private Space

deployment. For this purpose, the Resource Orchestrator is offering the interface that

receives the deployment request of the virtual machines from the Analytics and Visualisation

Workbench. Once the virtual machines are provisioned, the Resource Orchestrator receives

a request via the provided interface for the deployment of the services that are operating in

the Secure and Private Space. Once the deployment of the services is completed, the Analytics

and Visualisation Workbench is informed by the Resource Orchestrator in order to start the

data analysis. Finally, the Resource Orchestrator is providing the interface that receives the

request for the stoppage or shutdown of the Secure and Private Space. The described process

is executed as part of the ICARUS application execution workflow included in the Data

Analytics and Visualisation workflows.

The details of the interfaces described above are presented in the following sub-section.

3.19.2 Interfaces
In the following tables the interfaces of the Resource Orchestration are defined

Table 3-88: Resource Orchestrator - deploy secure and private space

ICARUS Technical Interface

Technical Interface ID RO01

Endpoint Name Deploy the Secure and Private Space

Endpoint Description Receives the request to deploy the Secure and Private Space for the specific user
of an organisation

Component Resource Orchestrator

Endpoint URL https://icarus_platform[:port]/api/v1/resource-orchestrator/deploy/

HTTP method POST

Request Parameters None

Request Body {

 “username”: “string”,

 “organization_id”: “string”

}

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-89: Resource Orchestrator - stop secure and private space

ICARUS Technical Interface

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

108 / 134

Technical Interface ID RO02

Endpoint Name Stop the Secure and Private Space

Endpoint Description Receives the request to stop the Secure and Private Space for the specific user of
an organisation

Component Resource Orchestrator

Endpoint URL https://icarus_platform[:port]/api/v1/resource-orchestrator/deploy/stop

HTTP method POST

Request Parameters None

Request Body {

 “username”: “string”,

 “organization_id”: “string”

}

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-90: Resource Orchestrator - deploy services on secure and private space

ICARUS Technical Interface

Technical Interface ID RO03

Endpoint Name Deploy the services for Secure and Private Space

Endpoint Description Receives the request to deploy the services for the Secure and Private Space

Component Resource Orchestrator

Endpoint URL https://icarus_platform[:port]/api/v1/resource-orchestrator/deploy/services

HTTP method POST

Request Parameters None

Request Body {

 “username”: “string”,

 “organization_id”: “string”

}

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

109 / 134

3.20 Jobs Scheduler and Execution Engine

3.20.1 Services Outline
The Jobs Scheduler and Execution Engine is the component that enables the execution of the

ICARUS applications that were designed in the Analytics and Visualisation Workbench within

the context of the Secure and Private Space of the ICARUS platform.

As described in deliverables D3.1 and D3.2, the Jobs Scheduler and Execution Engine

component performs the background operations for the allocation and management of the

jobs that need to be executed in the context of an ICARUS application execution that includes:

(a) the deployment and management of the Execution Cluster with the help of the Resource

Orchestrator, (b) the execution (immediate or scheduled) of the data analysis on the

Execution Engine, and (c) the data handling operations related to the decryption and

encryption of the data assets that are utilised or produced in the process. Therefore, the Jobs

Scheduler and Execution Engine is the key part of the ICARUS Application execution workflow

as it orchestrates all the involved components in order to provide all the functionalities that

compose the Application Execution Service as presented in deliverable D3.2.

During the ICARUS application execution, the Jobs Scheduler and Execution Engine receives

the request for the execution or scheduled execution of the selected ICARUS application from

the Analytics and Visualisation Workbench via its dedicated interface. This request triggers a

series of actions towards the successful execution of the application. At first, a request is

performed to the Resource Orchestrator in order to deploy the local Spark workers of the

nodes of the Execution Cluster. Following the deployment preparation, the decryption of the

data assets that will be used in the application’s execution is performed with the help of the

Decryption Manager. Once both tasks are finished, the Jobs Scheduler and Execution Engine

performs the application execution. Once the execution is completed, the Jobs Scheduler and

Execution Engine is interacting with the Encryption manager in order to encrypt the results

and with the SecureSpace Worker in order to transfer them to the Core ICARUS platform so

as to be stored. Once all operations have finished, the Analytics and Visualisation Workbench

is notified.

As described above, the Jobs Scheduler and Execution Engine is exploiting the interfaces of

the Resource Orchestrator, the Encryption and Decryption Manager, while also offering a set

of the interfaces that are exploited by the Analytics and Visualization Workbench. The details

of these interfaces of the Jobs Scheduler and Execution Engine, are presented in the following

sub-section.

3.20.2 Interfaces
In the following tables the interfaces of the Jobs Scheduler and Execution Engine are defined.

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

110 / 134

Table 3-91: Jobs Scheduler and Execution Engine – get entry

ICARUS Technical Interface

Technical Interface ID JSEE01

Endpoint Name Get Entry

Endpoint Description The service allows to access the entries from the scheduling table.
Component Job Scheduler and Execution Engine

Endpoint URL http://job-scheduler:8080/entries/{id}
HTTP method GET
Request Parameters • id : The id of the application that has to be scheduled

Request Body N/A

Response Body {
 “entry”: {
 {
 “id”: long,
 “name”: “string”,
 “application_id”: integer,
 “user_id”: integer,
 “timezone”: “string”,
 “recurrent”: boolean,
 “cron_exp”: “string”,
 “created_time”: date,
 “updated_time”: date
 }
}

Table 3-92: Jobs Scheduler and Execution Engine - update entry

ICARUS Technical Interface

Technical Interface ID JSEE02

Endpoint Name Update entry

Endpoint Description The service allows to manipulate the entries from the scheduling table.
Component Job Scheduler and Execution Engine

Endpoint URL http://job-scheduler:8080/entries/{id}
HTTP method PUT
Request Parameters • id: The id of the application that has to be scheduled

Request Body {
 “name”: “string”,
 “application_id”: long,
 “user_id”: integer,
 “timezone”: “string”,
 “recurrent”: boolean,
 “cron_exp”: “string”,
 “start_time”: date,
 “end_time”: date

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

111 / 134

}

Response Body {
 “entry”: {
 {
 “id”: long,
 “name”: “string”,
 “application_id”: integer,
 “user_id”: integer,
 “timezone”: “string”,
 “recurrent”: boolean,
 “cron_exp”: “string”,
 “created_time”: date,
 “updated_time”: date
 }
}

Table 3-93: Jobs Scheduler and Execution Engine - delete entry

ICARUS Technical Interface

Technical Interface ID JSEE03

Endpoint Name Delete entry

Endpoint Description The service allows to delete the entry from the scheduling table.
Component Job Scheduler and Execution Engine

Endpoint URL http://job-scheduler:8080/entries/{id}
HTTP method DELETE
Request Parameters • id: The id of the application that has to be scheduled

Request Body N/A

Response Body • 200 OK
• 401 Unauthorised
• 403 Forbidden
• 404 Not Found

Table 3-94: Jobs Scheduler and Execution Engine - add entry

ICARUS Technical Interface

Technical Interface ID JSEE04

Endpoint Name Add new entry

Endpoint Description The service allows to add new entry in the scheduling table.
Component Job Scheduler and Execution Engine

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

112 / 134

Endpoint URL http://job-scheduler:8080/entries
HTTP method POST
Request Parameters N/A
Request Body {

 “name”: “string”,
 “application_id”: long,
 “user_id”: long,
 “timezone”: “string”,
 “recurrent”: boolean,
 “cron_exp”: “string”,
 “start_time”: date,
 “end_time”: date
}

Response Body {
 “entry”: {
 {
 “id”: long,
 “name”: “string”,
 “application_id”: long,
 “user_id”: long,
 “timezone”: “string”,
 “recurrent”: boolean,
 “cron_exp”: “string”,
 “created_time”: date,
 “updated_time”: date
 }
}

Table 3-95: Jobs Scheduler and Execution Engine - get all entries

ICARUS Technical Interface

Technical Interface ID JSEE05

Endpoint Name Get all entries

Endpoint Description The service allows to list the scheduling table.
Component Job Scheduler and Execution Engine

Endpoint URL http://job-scheduler:8080/entries
HTTP method GET
Request Parameters N/A

Request Body N/A

Response Body [
 {
 “id”: long,
 “name”: “string”,
 “application_id”: long,
 “user_id”: long,
 “recurrent”: boolean,
 “cron_exp”: “string”,
 “created_time”: date,
 “updated_time”: date

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

113 / 134

 }, ...
]

3.21 Notification Manager

3.21.1 Services Outline
In ICARUS platform, the Notification Manager is responsible for notifying users for any

updates related to the data assets and the scheduled analytics jobs and its implementation

follows the publish-subscribe pattern. As described in deliverable D3.2, the Notification

Manager is involved in the Notifications service and is a key part of the Data Recommendation

Workflows. Additionally, as described also in deliverable D3.2, each event type triggers a

specific process that the Notification Manager follows in order to collect the information

needed by interacting with the appropriate components and to notify the users. The

exchange of data is realized using various events that are pushed in a message queue by the

corresponding component. The requests of the Notification Manager for collecting further

information are facilitated via REST APIs, provided by related components. All the

notifications are shown in the notifications panel of the platform and the users can be notified

using various communication channels such as emails, if the users select these types of

notifications in their profiles. In order to provide all notification history to the users, the

Notification Manager needs to maintain a notifications storage to store the notifications for

each user in the ICARUS Storage.

When a data asset is added to ICARUS, a “DATASET_ADDITION” event is published. This event

is published by the Data Handler which is responsible to provide the information related to

the new data asset such as the data asset’s ID and its owner. Then, the Notification Manager

which acts as a consumer of the events, will request from the ICARUS Storage component, via

the Data Handler, the categories of this data asset and then, the users that have set similar

categories as their preferences. Subsequently, the Notification Manager will store the

notification in the ICARUS Storage, via the Data Handler, and notify these users via web

notification and email.

In a similar manner, the Data Handler will publish a “DATASET_UPDATE” event for any update

on an existing dataset. In this case, the message will contain the same information as the

previous event, but the Notification Manager needs to request the list of users that are

entitled to use this data asset from the Data License and Agreement Manager. Subsequently,

the Notification Manager requests the users’ information from the ICARUS Storage, via the

Data Handler, in order to notify them. Subsequently, the notification will be stored in the

ICARUS Storage, again via the Data Handler.

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

114 / 134

The Data License and Agreement Manager is responsible to publish another event which is

about a data asset request from a data consumer, called “DATASET_REQUEST”. This event

contains information about the user that requested the data asset, as well as the data asset

and its owner. At first, the Notification Manager is responsible to notify the data asset owner,

by requesting the owner’s information from the ICARUS Storage, via the Data Handler, storing

the notification to ICARUS Storage and notifying the owner. When the data owner approves

or rejects the request, then the Data License and Agreement Manager will publish another

event for this purpose, called “DATASET_RESPONSE”. In this case, Notification Manager will

retrieve the information of the user that requested the data asset from the ICARUS Storage,

via the Data Handler, store the notification in ICARUS Storage and notify the user that

requested the data asset. The Notification Manager will generally provide notifications to the

data provider and the data consumer in all steps during the contract preparation phase

(regarding the CONTRACT_DRAFTED, CONTRACT_SIGNED, CONTRACT_REJECTED and

CONTRACT_PAID events).

Finally, when there is an update on the execution status of a scheduled analytics job of a user,

another event is published which is named “JOB_STATUS_UPDATE”. This event is generated

by the Analytics and Visualization Workbench, containing information about the user ID, the

analytics job ID and the new status (i.e. initiated, completed, failed) with any other relative

information. This information will be used from the Notification Manager, so as to retrieve

the information of the user who initiated the analytics job from ICARUS Storage, via the Data

Handler, notify this user and store the notification in ICARUS Storage.

The details of the interfaces described above are presented in the following sub-section.

3.21.2 Interfaces
In the following tables the interfaces of the Notification Manager are defined. The first five

interfaces are RESTful interfaces and the remaining five interfaces are related to the

underlying publish / subscribe message queue. For the latter interfaces, the corresponding

broker URL and the appropriate event message format are documented.

Table 3-96: Notification Manager - list retrieval

ICARUS Technical Interface

Technical Interface ID NM01

Endpoint Name Notifications list retrieval

Endpoint Description Returns a list of notifications for a given user in a paginated format

Component Notification Manager

Endpoint URL https://icarus_platform[:port]/api/v1/notifications/user/:uid?page=0&size=10&
sort=created&order=dsc

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

115 / 134

HTTP method GET

Request Parameters • uid: user id
• page: page index of paginated results (optional, default = 0)
• size: number of maximum notification records to show on current page

(optional, default = 10, max = 100)
• sort: name of field to sort the results by (optional, default = createdAT)
• order: ascending or descending sorting order of results (‘asc’ or ‘dsc’)

Request Body N/A

Response Body The response body consists of a list of notifications records and pagination meta
information in a JSON format. The notification list includes the notification’s id,
title, body, type of notification, an optional icon from the font awesome library,
a URL to redirect the user on click and when the notification was created and
seen. The pagination information includes the current page index, the number of
notifications in the current page and in total, as well as the sorting field and order.
For example:
{
 notifications: [{
 id: "5cff7698b399d52f54eea54a",
 title: "Data Asset Update",
 body: "Body text goes here...",
 type: "info" | “warning” | “success” | “failure”,
 icon: “fas fa-exclamation-circle”,
 url: " https://hostname/..."
 seenAt: “2019-06-01T09:30:00.000Z”,
 createdAt: “2019-06-01T09:30:00.000Z”
 }, {
 …
 }],
 page: 0,
 size: 2,
 sort: “createdAt”,
 order: “dsc” | “asc”
 total: 5
}

Table 3-97: Notification Manager - single notification retrieval

ICARUS Technical Interface

Technical Interface ID NM02

Endpoint Name Single notification record retrieval

Endpoint Description Returns a single notification record by the given notification id

Component Notification Manager

Endpoint URL https://icarus_platform[:port]/api/v1/notifications/{nid}

HTTP method GET

Request Parameters • nid: notification id

Request Body N/A

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

116 / 134

Response Body The response body consists of a single notification record with the same
information described in NM01. For example:
{
 id: "5cff7698b399d52f54eea54a",
 title: "Data Asset Update",
 body: "Body text goes here...",
 type: "info" | “warning” | “success” | “failure”,
 icon: “fas fa-exclamation-circle”,
 url: " https://hostname/..."
 seenAt: “2019-06-01T09:30:00.000Z”,
 createdAt: “2019-06-01T09:30:00.000Z”
}

Table 3-98: Notification Manager - mark notification as seen

ICARUS Technical Interface

Technical Interface ID NM03

Endpoint Name Mark notification as seen

Endpoint Description Updates the given notification as seen and returns the newly updated notification

Component Notification Manager

Endpoint URL https://icarus_platform[:port]/api/v1/notifications/{nid}/seen

HTTP method PUT

Request Parameters • nid: notification id

Request Body N/A

Response Body The response body consists of the newly updated notification record. For
example:
{
 id: "5cff7698b399d52f54eea54a",
 title: "Data Asset Update",
 body: "Body text goes here...",
 type: "info" | “warning” | “success” | “failure”,
 icon: “fas fa-exclamation-circle”,
 url: " https://hostname/..."
 seenAt: “2019-06-01T09:30:00.000Z”,
 createdAt: “2019-06-01T09:30:00.000Z”
}

Table 3-99: Notification Manager - mark all notifications as seen

ICARUS Technical Interface

Technical Interface ID NM04

Endpoint Name Mark all notifications as seen

Endpoint Description Updates all the notification of a given user as seen

Component Notification Manager

Endpoint URL https://icarus_platform[:port]/api/v1/notifications/{uid}

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

117 / 134

HTTP method PUT

Request Parameters • uid: user id

Request Body N/A

Response Body N/A

Table 3-100: Notification Manager - delete notification

ICARUS Technical Interface

Technical Interface ID NM05

Endpoint Name Delete Notification

Endpoint Description Removes the notification from storage

Component Notification Manager

Endpoint URL https://icarus_platform[:port]/api/v1/notifications/{nid}

HTTP method DELETE

Request Parameters • nid: notification id

Request Body N/A

Response Body N/A

Table 3-101: : Notification Manager - new data asset notification

ICARUS Technical Interface

Technical Interface ID NM06

Event Name New data asset notification

Event Description Event for notifying interested users for the addition of a new data asset

Component Notification Manager

Broker URL https://icarus_platform[:port]/api/v1/kafka_notifications/

Event Message The event message should include the newly added data asset id and data asset
owner’s id. For example:
{
 "event_type": "DATASET_ADDITION",
 "dataAssetId": "D12345678",
 "dataAssetOwnerId": "U12345678"
}

Table 3-102: Notification Manager - data asset update notification

ICARUS Technical Interface

Technical Interface ID NM07

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

118 / 134

Event Name Data asset update notification

Event Description Event for notifying interested users for updates on data assets

Component Notification Manager

Broker URL https://icarus_platform[:port]/api/v1/kafka_notifications/

Event Message The event message should include the updated data asset id and data asset
owner’s id. For example:
{
 "event_type": "DATASET_UPDATE",
 "dataAssetId": "D12345678",
 "dataAssetOwnerId": "U12345678"
}

Table 3-103: Notification Manager - data asset request notification

ICARUS Technical Interface

Technical Interface ID NM08

Event Name Data asset request notification

Event Description Event for notifying a data asset owner for access requests from users

Component Notification Manager

Broker URL https://icarus_platform[:port]/api/v1/kafka_notifications/

Event Message The event message should include the requested data asset id, owner and
requester id. For example:
{
 "event_type: "DATASET_REQUEST",
 "dataAssetId": "D12345678",
 "dataAssetOwnerId": "U12345678",
 "dataAssetRequesterId": "U12344444"
}

Table 3-104: Notification Manager - data asset draft contract notification

ICARUS Technical Interface

Technical Interface ID NM09

Event Name Data asset response notification for a draft contract ready for signature

Event Description Event for notifying a data asset requester for the owners’ response

Component Notification Manager

Broker URL https://icarus_platform[:port]/api/v1/kafka_notifications/

Event Message The event message should include the requested data asset id, owner and
requester id. For example:
{
 "event_type: “DATASET_RESPONSE”,
 "dataAssetId": "D12345678",
 "dataAssetOwnerId": "U12345678",
 "dataAssetRequesterId": "U12344444",
 "contactId": "XYZ12345678",

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

119 / 134

}

Table 3-105: Notification Manager – job status update notification

ICARUS Technical Interface

Technical Interface ID NM10

Event Name Job status update notification

Event Description Event for notifying a user for any update on the execution status of his scheduled
analytics job

Component Notification Manager

Broker URL https://icarus_platform[:port]/api/v1/kafka_notifications/

Event Message The event message should include the analytics job id, the user’s id and the job’s
status. For example:
{
 "event_type": "JOB_STATUS_UPDATE",
 "jobId": "J12345678",
 "userId": "U12345678",
 "status": "initiated" | "completed" | "failed"
}

3.22 Usage Analytics

3.22.1 Services Outline
Usage Analytics is the component of the ICARUS architecture that is responsible for providing

meaningful platform utilization insights by collecting, aggregating and visualizing statistics

related to the usage of data (e.g. total number of purchases) and service assets (e.g. total

number of times an application was used), as well as usage statistics of the platform (e.g. total

number of active users) and the users’ private space (e.g. number of active analytics jobs). As

described in deliverable D3.2, the implementation of Usage Analytics is based on the publish-

subscribe pattern and consumes the events that various components publish. Using these

events, the Usage Analytics component is able to interact with the various ICARUS

components and receive all the needed inputs.

The Policy Manager is responsible to generate events every time a user registers to the

ICARUS platform and every time the user logs in/out to/from the platform. These events,

called “USER_REGISTER”, “USER_LOGIN” and “USER_LOGOUT”, contain information such as

the user ID and the specific timestamp of the related action. Additional statistics will be

aggregated at organization level.

The Query Explorer is responsible to generate events for the exploration of the assets. This

involves information related to which assets appear in search results included in

“ASSETS_APPEARED” events, as well as which of them are viewed, starred and unstarred in

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

120 / 134

“ASSET_VIEWED”, “ASSET_STARRED” and “ASSET_UNSTARRED” events, respectively. These

events include the asset ID, the related user ID and the specific timestamp in each case.

Τhe Data License and Agreement Manager is responsible to publish “ASSET_REQUESTED”,

“ASSET_REQUEST_REJECTED”, “CONTRACT_DRAFTED”, “CONTRACT_SIGNED”,

“CONTRACT_REJECTED” and “ASSET_PURCHASED” / “CONTRACT_PAID” events for assets

requests and contracts. These types of events will contain information such as the asset ID,

the asset consumer who requested/purchased the asset, the asset’s provider, and the

timestamp of the event.

The Data Handler is responsible to generate an event “ASSET_ADDITION” when an asset is

added to ICARUS and an event “ASSET_UPDATED” when an existing asset is updated in the

ICARUS platform. Such events are published by the Data Handler which is responsible to

provide the information related to the new asset such as the asset’s ID and its owner, as well

as the categories/tags of the asset.

Furthermore, the “ALGORITHM_USED” and “VISUALIZATION_USED” events that include

information related to the usage of the algorithms and the visualizations are published by the

Analytics and Visualization Workbench. This information is about the usage of each algorithm

and visualization, as well as the user that utilized the application, including the specific

timestamp. Τhe Analytics and Visualization Workbench also publishes events about the users’

analytics jobs, including information about their jobs’ status and timestamps. “JOB_STARTED”

event is published when an analytics job is initiated, “JOB_SUCCESS” event is generated when

an analytics job is successfully completed and “JOB_FAILED” event is published when an

analytics job has stopped due to an error (e.g. lack of resources).

In addition, the Resource Orchestrator publishes events for the usage of the platform’s

computational resources. Specifically, it publishes “VM_STARTED” and “VM_STOPPED”

events, for the allocation and de-allocation of computational resources (e.g. CPU, memory,

storage, etc.) to the users’ private spaces respectively, accompanied with the specific

timestamps.

The Usage analytics component consumes these events and stores them in the ICARUS

Storage via the Data Handler. When a user requires to visualize the various statistics, Usage

Analytics interacts with the ICARUS Storage, via the Data Handler, and retrieves, aggregates

and visualizes the statistics to the user.

The details of the interfaces described above are presented in the following sub-section.

3.22.2 Interfaces
As described in the previous sub-section, the Usage Analytics component is following a
publish subscribe pattern utilising a message queue. Hence, in the following tables the

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

121 / 134

interfaces of the Usage Analytics are defined, documenting the corresponding broker URL and
the appropriate event message format.

Table 3-106: Usage Analytics - user registration

ICARUS Technical Interface

Technical Interface ID UA01

Event Name User registration

Event Description Stores the registration event of a user.

Component Usage Analytics

Broker URL https://icarus_platform[:port]/api/v1/kafka_usage_analytics/

Event Message The event message should include the id of the newly registered user and the
datetime of the user registration. For example:
{
 “event_type”: “USER_REGISTER”,
 “user_id”: “U12345678”,
 “registered_at”: “2019-06-01T09:30:00.000Z”
}

Table 3-107: Usage Analytics - user login

ICARUS Technical Interface

Technical Interface ID UA02

Event Name User log in

Event Description Stores the login event of a user.

Component Usage Analytics

Broker URL https://icarus_platform[:port]/api/v1/kafka_usage_analytics/

Event Message The event message should include the id of the logged in user and the datetime
of the login. For example:
{
 “event_type”: “USER_LOGIN”,
 “user_id”: “U12345678”,
 “login_at”: “2019-06-01T09:30:00.000Z”
}

Table 3-108: Usage Analytics - user logout

ICARUS Technical Interface

Technical Interface ID UA03

Event Name User log out

Event Description Stores the logout event of a user.

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

122 / 134

Component Usage Analytics

Broker URL https://icarus_platform[:port]/api/v1/kafka_usage_analytics/

Event Message The event message should include the id of the logged-out user and the datetime
of the logout. For example:
{
 “event_type”: “USER_LOGOUT”,
 “user_id”: “U12345678”,
 “logout_at”: “2019-06-01T09:30:00.000Z”
}

Table 3-109: Usage Analytics - asset appeared in search

ICARUS Technical Interface

Technical Interface ID UA04

Event Name Assets appeared in search results

Event Description Stores a list of assets ids that appeared in the search results of a user.

Component Usage Analytics

Broker URL https://icarus_platform[:port]/api/v1/kafka_usage_analytics/

Event Message The event message should include the ids of the assets that appeared from the
query results, the user id and the datetime. For example:
{
 “event_type”: “ASSETS_APPEARED”,
 “assets_ids”: [
 “D11111111”,
 “D22222222”,
 …
],
 “user_id”: “U12345678”,
 “assets_appeared_at”: “2019-06-01T09:30:00.000Z”
}

Table 3-110: Usage Analytics - asset viewed

ICARUS Technical Interface

Technical Interface ID UA05

Event Name Asset viewed

Event Description Stores the event that an asset was viewed by a specific user.

Component Usage Analytics

Broker URL https://icarus_platform[:port]/api/v1/kafka_usage_analytics/

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

123 / 134

Event Message The event message should include the id of the asset that was viewed, the user
id and the datetime. For example:

{
 “event_type”: “ASSET_VIEWED”,
 “asset_id”: “D11111111”,
 “user_id”: “U12345678”,
 “viewed_at”: “2019-06-01T09:30:00.000Z”
}

Table 3-111: Usage Analytics - asset starred

ICARUS Technical Interface

Technical Interface ID UA06

Event Name Asset starred

Event Description Stores the event that an asset was starred by a specific user.

Component Usage Analytics

Broker URL https://icarus_platform[:port]/api/v1/kafka_usage_analytics/

Event Message The event message should include the id of the asset that was starred, the user
id and the datetime. For example:
{
 “event_type”: “ASSET_STARRED”,
 “asset_id”: “D11111111”,
 “user_id”: “U12345678”,
 “starred_at”: “2019-06-01T09:30:00.000Z”
}

Table 3-112: Usage Analytics - asset un-starred

ICARUS Technical Interface

Technical Interface ID UA07

Event Name Asset un-starred

Event Description Stores the event that an asset was un-starred by a specific user.

Component Usage Analytics

Broker URL https://icarus_platform[:port]/api/v1/kafka_usage_analytics/

Event Message The event message should include the id of the asset that was un-starred, the
user id and the datetime. For example:
{
 “event_type”: “ASSET_UNSTARRED”,
 “asset_id”: “D11111111”,
 “user_id”: “U12345678”,
 “unstarred_at”: “2019-06-01T09:30:00.000Z”
}

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

124 / 134

Table 3-113: Usage Analytics - asset requested

ICARUS Technical Interface

Technical Interface ID UA08

Event Name Asset requested

Event Description Stores the event that an asset was requested by a specific user (asset consumer).

Component Usage Analytics

Broker URL https://icarus_platform[:port]/api/v1/kafka_usage_analytics/

Event Message The event message should include the id of the asset that was requested, the id
of the user that requested the asset and the datetime. For example:
{
 “event_type”: “ASSET_REQUESTED”,
 “asset_id”: “D11111111”,
 “user_id”: “U12345678”,
 “requested_at”: “2019-06-01T09:30:00.000Z”
}

Table 3-114: Usage Analytics - asset request rejected

ICARUS Technical Interface

Technical Interface ID UA09

Event Name Asset request rejected

Event Description Stores the event that a request for an asset was rejected by the asset owner.

Component Usage Analytics

Broker URL https://icarus_platform[:port]/api/v1/kafka_usage_analytics/

Event Message The event message should include the id of the asset that was requested, the id
of the user (consumer) that requested the asset, the id of the user (asset owner)
that rejected the request and the datetime. For example:
{
 “event_type”: “ASSET_REQUEST_REJECTED”,
 “asset_id”: “D11111111”,
 “asset_consumer_id”: “U12345678”,
 “asset_owner_id”: “U22222222”,
 “requested_at”: “2019-06-01T09:30:00.000Z”
}

Table 3-115: Usage Analytics - asset purchased

ICARUS Technical Interface

Technical Interface ID UA10

Event Name Asset purchased

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

125 / 134

Event Description Stores the event that an asset was purchased by the asset consumer.

Component Usage Analytics

Broker URL https://icarus_platform[:port]/api/v1/kafka_usage_analytics/

Event Message The event message should include the id of the asset that was purchased, the id
of the user (consumer) that purchased the asset, the id of the user (asset owner)
that sold the asset, the date (start, end) that the contract will be active and the
datetime of the purchase. For example:
{
 “event_type”: “ASSET_PURCHASED”,
 “asset_id”: “D11111111”,
 “asset_consumer_id”: “U12345678”,
 “asset_owner_id”: “U22222222”,
 “contract_start_date”: “2019-06-01T09:30:00.000Z”,
 “contract_end_date”: “2020-06-01T09:30:00.000Z”,
 “purchased_at”: “2019-06-01T09:30:00.000Z”
}

Table 3-116: Usage Analytics - asset created

ICARUS Technical Interface

Technical Interface ID UA11

Event Name Asset created/uploaded

Event Description Stores the event that an asset was created or uploaded by an asset provider.

Component Usage Analytics

Broker URL https://icarus_platform[:port]/api/v1/kafka_usage_analytics/

Event Message The event message should include the id of the asset that was uploaded/created,
the id of the user (asset owner) that uploaded/created the asset, whether it is a
data asset or a service asset, and the datetime that the asset was
uploaded/created. For example:
{
 “event_type”: “ASSET_ADDITION”,
 “asset_id”: “D11111111”,
 “asset_owner_id”: “U22222222”,
 “is_data_asset”: “1”,
 “created_uploaded_at”: “2019-06-01T09:30:00.000Z”
}

Table 3-117: Usage Analytics - algorithm utilised

ICARUS Technical Interface

Technical Interface ID UA12

Event Name Algorithm utilized

Event Description Stores the event that an algorithm was used by a specific user.

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

126 / 134

Component Usage Analytics

Broker URL https://icarus_platform[:port]/api/v1/kafka_usage_analytics/

Event Message The event message should include the id of the user that used the algorithm, the
id of the algorithm and the datetime that the algorithm was used. For example:
{
 “event_type”: “ALGORITHM_USED”,
 “user_id”: “U12345678”,
 “algorithm_id”: “A12345678”,
 “utilized_at”: “2019-06-01T09:30:00.000Z”
}

Table 3-118: Usage Analytics - visualisation utilised

ICARUS Technical Interface

Technical Interface ID UA13

Event Name Visualization utilized

Event Description Stores the event that a visualization was used by a specific user.

Component Usage Analytics

Broker URL https://icarus_platform[:port]/api/v1/kafka_usage_analytics/

Event Message The event message should include the id of the user that used the visualization,
the id of the visualization and the datetime that the visualization was used. For
example:
{
 “event_type”: “VISUALIZATION_USED”,
 “user_id”: “U12345678”,
 “visualization_id”: “V12345678”,
 “utilized_at”: “2019-06-01T09:30:00.000Z”
}

Table 3-119: Usage Analytics - vm started

ICARUS Technical Interface

Technical Interface ID UA14

Event Name VM started

Event Description Stores the event of the allocation of a VM.

Component Usage Analytics

Broker URL https://icarus_platform[:port]/api/v1/kafka_usage_analytics/

Event Message The event message should include the id of the new vm and the resources of the
vm. For example:
{
 “event_type”: “VM_STARTED”,
 “vm_id”: “V12345678”,
 “vm_resources”: {

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

127 / 134

 “CPUs”: “16”,
 “RAM_GB”: “32”,
 “Disk_Bytes”: “1073741824”
 },
 “started_at”: “2019-06-01T09:30:00.000Z”
}

Table 3-120: Usage Analytics - vm stopped

ICARUS Technical Interface

Technical Interface ID UA15

Event Name VM stopped

Event Description Stores the event of the de-allocation of a VM.

Component Usage Analytics

Broker URL https://icarus_platform[:port]/api/v1/kafka_usage_analytics/

Event Message The event message should include the id of the vm, the resources of the vm that
was stopped, the total resources of the platform and the datetime that the vm
stopped. For example:
{
 “event_type”: “VM_STOPPED”,
 “vm_id”: “V12345678”,
 “vm_resources”: {
 “CPUs”: “16”,
 “RAM_GB”: “32”,
 “Disk_Bytes”: “1073741824”
 },
 “stopped_at”: “2019-06-01T09:30:00.000Z”
}

Table 3-121: Usage Analytics - new analytics job

ICARUS Technical Interface

Technical Interface ID UA16

Event Name New analytic job

Event Description Stores the event of the initialization of a new job from a user.

Component Usage Analytics

Broker URL https://icarus_platform[:port]/api/v1/kafka_usage_analytics/

Event Message The event message should include the id of the user that started the new job, the
id of the new job, the resources for the job, the available resources of the user
after the new job, and the datetime that the job started. For example:
{
 “event_type”: “JOB_STARTED”,
 “user_id”: “U12345678”,
 “job_id”: “J12345678”,

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

128 / 134

 “job_resources”: {
 “CPUs”: “16”,
 “RAM_GB”: “32”,
 “Disk_Bytes”: “1073741824”
 },
 “user_available_resources”: {
 “CPUs”: “160”,
 “RAM_GB”: “320”,
 “Disk_Bytes”: “107374182400”
 },
 “started_at”: “2019-06-01T09:30:00.000Z”
}

Table 3-122: Usage Analytics - analytics job success

ICARUS Technical Interface

Technical Interface ID UA17

Event Name Successfully completed analytic job

Event Description Stores the event of the successful completion of a job.

Component Usage Analytics

Broker URL https://icarus_platform[:port]/api/v1/kafka_usage_analytics/

Event Message The event message should include the id of the completed job, and the datetime
that the job completed. For example:
{
 “event_type”: “JOB_SUCCESS”,
 “job_id”: “J12345678”,
 “completed_at”: “2019-06-01T09:30:00.000Z”
}

Table 3-123: Usage Analytics - analytics job failed

ICARUS Technical Interface

Technical Interface ID UA18

Event Name Failed analytic job

Event Description Stores the event of the unsuccessful completion of a job and the error of the
failed job.

Component Usage Analytics

Broker URL https://icarus_platform[:port]/api/v1/kafka_usage_analytics/

Event Message The event message should include the id of the job that failed, and the datetime
that the job failed. For example:
{
 “event_type”: “JOB_FAILED”,
 “job_id”: “J12345678”,
 “error_id”: “error-1”,

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

129 / 134

 “failed_at”: “2019-06-01T09:30:00.000Z”
}

Table 3-124: Usage Analytics - general assets statistics

ICARUS Technical Interface

Technical Interface ID UA19

Endpoint Name General asset statistics

Endpoint Description Returns aggregated statistics about total number of views, stars and purchases
for a specific asset.

Component Usage Analytics

Endpoint URL https://icarus_platform[:port]/api/v1/usage-
analytics/general_asset_statistics?asset_id=[asset_id]

HTTP method GET

Request Parameters • asset_id: the unique id of an asset

Request Body N/A

Response Body The response body consists of the total number of views, stars and purchases for
a specific asset. For example:

{
 "number_of_views": “215”,
 "number_of_stars": “35”,
 "number_of_purchases ": “8”
}

Table 3-125: Usage Analytics - private assets statistics

ICARUS Technical Interface

Technical Interface ID UA20

Endpoint Name Private asset statistics

Endpoint Description Returns several metrics/statistics for an asset. This endpoint can be accessed only
by the asset owners of the specific asset.

Component Usage Analytics

Endpoint URL https://icarus_platform[:port]/api/v1/usage-
analytics/private_asset_statistics?asset_id=[asset_id]&from=yyyy-MM-dd&to=
yyyy-MM-dd

HTTP method GET

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

130 / 134

Request Parameters • asset_id: the unique id of an asset
• from: returns statistics after the given date. Date should be formatted as

yyyy-MM-dd.
• to: returns statistics before the given date. Date should be formatted as yyyy-

MM-dd.

Request Body N/A

Response Body The response body consists of several different private metrics for an asset that
only the asset owner has access. For example:

{
 "number_of_views": “215”,
 "views_per_time_period": [{
 “date”: “2019-06-01”, “views”: “5”
 }, { … }
],
 "number_of_stars": “35”,
 "stars_per_time_period": [{
 “date”: “2019-06-01”, “stars”: “25”
 }, { … }
],
 "number_of_purchases ": “8”,
 "purchases_per_time_period": [{
 “date”: “2019-06-01”, “purchases”: “2”
 }, { … }
],
 "number_of_requests_received ": “20”,
 "requests_per_time_period": [{
 “date”: “2019-06-01”, “requests”: “10”
 }, { … }
],
 "number_of_rejected_requests ": “10”,
 "rejected_requests_per_time_period": [{
 “date”: “2019-06-01”, “rejected_requests”: “5”
 }, { … }
]
}

Table 3-126: Usage Analytics - user private statistics

ICARUS Technical Interface

Technical Interface ID UA21

Endpoint Name Organization private statistics

Endpoint Description Returns several metrics/statistics for the profile and private space of an
organization.

Component Usage Analytics

Endpoint URL https://icarus_platform[:port]/api/v1/usage-
analytics/user_private_statistics?user_id=[user_id]&from=yyyy-MM-dd&to=
yyyy-MM-dd

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

131 / 134

HTTP method GET

Request Parameters • organization_id: the unique id of an organization
• from: returns statistics after the given date. Date should be formatted as

yyyy-MM-dd.
• to: returns statistics before the given date. Date should be formatted as yyyy-

MM-dd.

Request Body N/A

Response Body The response body consists of several different private metrics for an
organization. For example:

{
 “user_current_available_resources”: {
 “CPUs”: “160”,
 “RAM_GB”: “320”,
 “Disk_Bytes”: “107374182400”
 },
 " user_available_resources_per_time_period": [{
 “date”: “2019-07-01”,
 “resources”: {
 “CPUs”: “160”,
 “RAM_GB”: “320”,
 “Disk_Bytes”: “107374182400”
 }
 }, { … }
],
 “number_of_current_active_jobs”: “10”,
 " active_jobs_per_time_period": [{
 “date”: “2019-07-01”, “active_jobs”: “5”
 }, { … }
],
 " completed_jobs_per_time_period": [{
 “date”: “2019-07-01”, “completed_jobs”: “5”
 }, { … }
],
 " failed_jobs_per_time_period": [{
 “date”: “2019-07-01”, “failed_jobs”: “5”
 }, { … }
],
 "number_of_requests": “10”,
 "requests_per_time_period": [{
 “date”: “2019-07-01”, “requests”: “5”
 }, { … }
],
 "number_of_data_assets_uploaded": “10”,
 "data_assets_uploaded_per_time_period": [{
 “date”: “2019-07-01”, “uploaded_data_assets”: “5”
 }, { … }
],
 "number_of_service_assets_created": “10”,
 "service_assets_created_per_time_period": [{
 “date”: “2019-07-01”, “created_service_assets”: “5”
 }, { … }
]
}

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

132 / 134

Table 3-127: Usage Analytics - admin private statistics

ICARUS Technical Interface

Technical Interface ID UA22

Endpoint Name Admin private statistics

Endpoint Description Returns several aggregated metrics/statistics for the admin user. This endpoint
can be accessed only by the admin.

Component Usage Analytics

Endpoint URL https://icarus_platform[:port]/api/v1/usage-
analytics/admin_private_statistics?from=yyyy-MM-dd&to= yyyy-MM-dd

HTTP method GET

Request Parameters • from: returns statistics after the given date. Date should be formatted as
yyyy-MM-dd.

• to: returns statistics before the given date. Date should be formatted as yyyy-
MM-dd.

Request Body N/A

Response Body The response body consists of several different private metrics for the admin. For
example:

 "total_registered_users": "150",
 "number_of_new_users_per_time_period": [{
 "date": "2019-07-01", "number_of_users": "10"
 },{...}
],
 "number_of_active_users": "25",
 "number_of_active_users_per_time_period": [{
 "date": "2019-07-01", "number_of_active_users": "10"
 },{...}
],
 "total_uploaded_data_assets": "85",
 "number_of_uploaded_data_assets_per_time_period": [{
 "date": "2019-07-01", "number_of_data_assets": "10"
 },{...}
],
 "total_created_applications": "15",
 "number_of_created_applications_per_time_period": [{
 "date": "2019-07-01", "number_of_applications": "10"
 },{...}
],
 "total_asset_requests": 50,
 "number_of_asset_requests_per_time_period": [{
 "date": "2019-07-01", "number_of_requests": "10"
 },{...}
],
 "total_rejected_requests": "20",
 "number_of_rejected_requests_per_time_period": [{
 "date": "2019-07-01", "number_of_rejected_requests": "10"

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

133 / 134

 },{...}
],
 "total_purchased_assets": "30",
 "number_of_purchased_assets_per_time_period": [{
 "date": "2019-07-01", "number_of_purchases": "10"
 },{...}
],
 "popularity_of_analytics_algorithms": [{
 "algorithm": "k-means", "number_of_times_used": "10"
 },{...}
],
 "popularity_of_visualizations": [{
 "visualization": "bar-chart", "number_of_times_used": "10"
 },{...}
],
 "platform_available_resources": {
 “CPUs”: “160”,
 “RAM_GB”: “320”,
 “Disk_Bytes”: “107374182400”
 },
 "platform_available_resources_per_time_period": [{
 “date”: “2019-07-01”,
 “resources”: {
 “CPUs”: “160”,
 “RAM_GB”: “320”,
 “Disk_Bytes”: “107374182400”
 }
 }, { … }
],
 "number_of_current_active_jobs": “10”,
 " active_jobs_per_time_period": [{
 “date”: “2019-07-01”, “active_jobs”: “5”
 }, { … }
],
 " completed_jobs_per_time_period": [{
 “date”: “2019-07-01”, “completed_jobs”: “5”
 }, { … }
],
 " failed_jobs_per_time_period": [{
 “date”: “2019-07-01”, “failed_jobs”: “5”
 }, { … }
]

D3.3 – Architecture, Core Data and Value Added Services Bundles
Specifications-v2.00

134 / 134

4 Conclusions & Next Steps

The purpose of this deliverable entitled D3.3 “Architecture, Core Data and Value Added

Services Bundles Specifications-v2.00” was to deliver the complementary documentation,

updating the information documented in deliverable D3.1, for the ICARUS platform

architecture, as well as for the core functionalities and the interfaces of the components that

compose the ICARUS platform. The deliverable is built directly on top of the main outcomes

and the knowledge extracted from deliverables D3.1 and D3.2 in order to deliver the required

updates and refinements on the documentation of the components of the platform, as a

result of the thorough analysis that was performed on the ICARUS platform’s workflows and

the design of the services of the platform.

At first, the architecture of the integrated ICARUS platform is further elaborated, providing

the necessary description of the updated components of the platform focusing on their

positioning within platform, the functionalities of the platform that they are involved in and

their interactions with the other components in order to deliver these functionalities.

Following the complementary documentation of the ICARUS architecture, the necessary

updates on the documentation of the ICARUS components, that was presented in deliverable

D3.1, are documented. For each component of the platform, the core functionalities that they

offer are described. Furthermore, their involvement in the ICARUS platform’s workflows and

the services is presented, focusing on the communication and interactions with the rest of

the components for the implementation of these workflows and services. To facilitate these

interactions, a set of interfaces is described for each component that enable the required

exchange of information between the components. Furthermore, the complete technical

details of these interfaces are documented. In total, 127 interfaces were documented.

The current deliverable presented the updated documentation of the architecture of the

integrated ICARUS platform and of all the components of the platform. However, as the

project evolves and the development activities are progressing, the design of the ICARUS

platform’s architecture and of the components of the architecture will receive the necessary

updates and optimisations in order to encapsulate all the project’s advancements, as well as

the new technical requirements that will be extracted from the feedback that will be collected

from the platform’s development and evaluation activities. Hence, the forthcoming versions

of this deliverable will incorporate all the updates that are necessary to be introduced.

